

Faculty of Engineering and Technology

REGULATIONS 2021

Programme:

B.E. – ELECTRICAL AND ELECTRONICS ENGINEERING

Part Time $(3\frac{1}{2} \text{ Years})$

CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM

(Semester I to VII)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
P012	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

-g-1.- d-=+

PROGRAMME SPECIFIC OUTCOMES (PSOS)

Graduating Students of Electrical and Electronics Engineering programme will be able to:

SI. No.	Description
PSO 1	Apply science, mathematics and engineering through differential and integral calculus, complex variables to solve electrical engineering problems.
PSO 2	Demonstrate proficiency in use of software and hardware to be required to practice electrical engineering profession.
PSO 3	Provide socially acceptable technical solution with the knowledge of ethical and management principles for sustainable development.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

SI. No.	Description
PEO1	To impart the graduates to promote basic science and mathematical foundation, as also the principles and technology advancements made in electrical and electronics engineering and allied fields.
PEO2	To induce the graduates to design Electrical, Electronics and Computing systems those are innovative and socially acceptable.
PEO3	To motivate the graduates to exhibit professionalism, ethics, communication skills, team work and Application oriented research.

- p-1- - -==

VINAYAKA MISSION'S RESEARCH FOUNDATION (DEEMED TO BE UNIVERSITY), SALEM

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CURRICULUM FOR REGULATION-2021

Credit Requirement for the Course Categories

SI. No.	Category of Courses	1	Types of Courses	Suggested Breakup of Credits (min-max)
1.	A. Foundation Courses	Humanities and S Management Cou	ocial Sciences including Irses	9 - 12
2.	(18-24)	Basic Science Co	urses	9 - 12
3.	B. Professional	Core Courses		61
		Professional Elect	tives	12 – 15
4.	C. Elective Courses		Innovation, Entrepreneurship, Skill Development etc.	3 – 6
	(18-27)	Open Electives	Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc.	3 – 6
5.	D. Courses for Presentation of technical Skills related to the specialization	Project Work		8
6.	**E. Mandatory Courses	Yoga and Meditat Essence of Indian Constitution, NCC Unnat Bharat Abh Games	Zero Credit Course (Minimum 2 Courses to be Completed other than Yoga and Meditation)	
	Minir	105		

- p-1- - -==

CURRICULUM

B.E (Part Time) – ELECTRICAL AND ELECTRONICS ENGINEERING

SEMESTER I TO VII

-P-1- d-=+

	B.E.(Part Time) – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VII												
	A. Foundation Courses												
Humanities and Social Sciences including Management Courses – Credits (9-12)													
SL. NO	COURSE CODDE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Ρ	С	PREREQUISITE				
1		TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL				
2		ENGINEERING MANAGEMENT AND ETHICS	MANAG	FC-HS	3	0	0	3	NIL				
3		OPERATIONS MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL				
4		UNIVERSAL HUMAN VALUES - UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL				
		Basic Scie	nce Courses –	Credits (9-1	2)								
1.		ENGINEERING MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL				
2.		DIFFERENTIAL EQUATIONS AND TRANSFORMS	MATH	FC-BS	2	1	0	3	ENGINEERING MATHEMATICS				
3.		SMART MATERIALS AND NANO TECHNOLOGY	PHY	FC-BS	3	0	0	3	NIL				
4.		PARTIAL DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA	MATH	FC-BS	2	1	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS				
5		ENVIRONMENTAL SCIENCES	СНЕМ	FC-BS	3	0	0	3	NIL				

-9-1- d-=+

	B.E (Part Time) – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VIII												
		B. Pro	ofessional C	ourses									
		Core C	ourses – Cre	dits (61)									
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE				
1.		ELECTRIC CIRCUIT ANALYSIS (THEORY AND PRACTICALS)	EEE	CC	3	0	2	4	NIL				
2.		SEMICONDUCTOR DEVICES AND CIRCUITS	ECE	CC	3	0	0	3	NIL				
3.		ELECTRICAL MACHINES - I	EEE	CC	3	0	0	3	NIL				
4.		ELECTRICAL MACHINES - II	EEE	CC	3	0	0	3	ELECTRICAL MACHINES – I				
5.		ELECTROMAGNETIC THEORY	EEE	CC	3	0	0	3	ENGINEERING MATHEMATICS				
6.		MEASUREMENT AND INSTRUMENTATION (THEORY AND PRACTICALS)	EEE	СС	3	0	2	4	NIL				
7.		ANALOG AND DIGITAL CIRCUITS (THEORY AND PRACTICALS)	ECE	СС	3	0	2	4	SEMICONDUCTOR DEVICES AND CIRCUITS				
8.		POWER ELECTRONICS AND DRIVES (THEORY AND PRACTICALS)	EEE	СС	3	0	2	4	SEMICONDUCTOR DEVICES AND CIRCUITS				
9.		TRANSMISSION AND DISTRIBUTION	EEE	CC	3	0	0	3	ELECTROMAGNETIC THEORY				
10.		CONTROL SYSTEMS	EEE	CC	3	0	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS				
11.		POWER SYSTEM ANALYSIS	EEE	CC	3	0	0	3	TRANSMISSION & DISTRIBUTION				
12.		MICROCONTROLLER BASED SYSTEM DESIGN AND EMBEDDED SYSTEM DESIGN (THEORY AND PRACTICALS)	ECE	СС	3	0	2	4	ANALOG AND DIGITAL CIRCUITS				
13.		POWER SYSTEM PROTECTION AND SWITCHGEAR	EEE	СС	3	0	0	3	ELECTRICAL MACHINES – I & ELECTRICAL MACHINES – II				
14.		EHVAC AND DC POWER TRANSMISSION	EEE	CC	3	1	0	4	NIL				
15.		PHOTOVOLTAIC ENERGY CONVERSION	EEE	CC	3	0	0	3	NIL				
16.		SEMICONDUCTOR DEVICES AND CIRCUITS LAB	ECE	CC	0	0	4	2	NIL				
17.		ELECTRICAL MACHINES - I LAB	EEE	CC	0	0	4	2	NIL				
18.		ELECTRICAL MACHINES - II LAB	EEE	CC	0	0	4	2	NIL				
19.		CONTROL SYSTEMS LAB	EEE	CC	0	0	4	2	NIL				
20.		POWER SYSTEM SIMULATION LAB	EEE	CC	0	0	4	2	NIL				

-9-1- d-=+

	B.E.(Part Time) – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VII												
		C.	Elective Cou	irses									
		Profession	al Elective - (Credits(12-1	5)								
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	С	PREREQUISITE				
1.		HIGH VOLTAGE ENGINEERING	EEE	EC-PS	3	0	0	3	NIL				
2.		POWER SYSTEM OPERATION AND CONTROL	EEE	EC-PS	3	0	0	3	NIL				
3.		POWER QUALITY AND FACTS	EEE	EC-PS	3	0	0	3	NIL				
4.		SPECIAL ELECTRICAL MACHINES	EEE	EC-PS	3	0	0	3	NIL				
5.		WIND ENERGY CONVERSION SYSTEMS	EEE	EC-PS	3	0	0	3	NIL				
6.		ELECTRIC VEHICLES	EEE	EC-PS	3	0	0	3	NIL				
7.		DISTRIBUTED GENERATION AND MICROGRIDS	EEE	EC-PS	3	0	0	3	NIL				
8.		POWER CONVERTERS ANALYSIS AND DESIGN	EEE	EC-PS	3	0	0	3	NIL				
9.		RENEWABLE ENERGY SOURCES	EEE	EC-PS	3	0	0	3	NIL				
10.		ENERGY CONVERSION AND STORAGE TECHNOLOGIES	EEE	EC-PS	3	0	0	3	NIL				
11.		POWER SYSTEM AND SMART GRID	EEE	EC-PS	3	0	0	3	NIL				
12.		DIGITAL SIGNAL PROTECTION FOR POWER SYSTEMS	EEE	EC-PS	3	0	0	3	NIL				
13.		DESIGN OF ELECTRICAL APPARATUS	EEE	EC-PS	3	0	0	3	NIL				
14.		HVDC TRANSMISSION SYSTEMS	EEE	EC-PS	3	0	0	3	NIL				
15.		ENERGY AUDIT AND CONSERVATION	EEE	EC-PS	3	0	0	3	NIL				

-g-1.-d-=+

	Open E	lective Courses – Innovation, En	trepreneurship	, Skill Devel	opme	ent e	tc	Cred	lits (3-6)
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Ρ	С	PREREQUISITE
1.		INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL
2.		NEW VENTURE PLANNING AND MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
3.		SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL
4.		ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
5.		INTELLECTUAL PROPERTY RIGHTS	MANAG	OE - IE	3	0	0	3	NIL
6.		LIFE SKILLS	MANAG	OE-IE	3	0	0	3	NIL

	Open Ele	ctive Courses – Electives from o	ther Technica	al and /or En	nergi	ng C	ourse	es Cr	edits (3-6)
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE
1.		PRINCIPLES OF BIOMEDICAL INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL
2.		BIOSENSORS AND TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL
3.		INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL
4.		FOOD AND NUTRITION TECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL
5.		DISASTER RISK MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
6.		MUNICIPAL SOLID WASTE MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
7.		FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	CSE	OE-EA	3	0	0	3	NIL
8.		INTRODUCTION TO INTERNET OF THINGS	CSE	OE-EA	3	0	0	3	NIL
9.		CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL
10.		DESIGN OF ELECTRONIC EQUIPMENT	ECE	OE-EA	3	0	0	3	NIL
11.		INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	NIL
12.		3D PRINTING AND ITS APPLICATIONS	MECH	OE-EA	3	0	0	3	NIL
13.		INDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	NIL
14.		BIOMOLECULES – STRUCTURE AND FUNCTION	PE	OE-EA	3	0	0	3	NIL
15.		PHARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL

-g-1.- d-=+

	B.E.(Part Time) – ELECTRICAL AND ELECTRONICS ENGINEERING – SEMESTER I TO VII										
	Project work, Credits - (8)										
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Ρ	С	PREREQUISITE		
1.		PROJECT WORK	EEE	PI-P	0	0	16	8	NIL		

	MANDATORY COURSES (NO CREDITS) (NOT INCLUDED FOR CGPA CALCULATIONS)											
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Ρ	с	PREREQUISITE			
1.		YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL			
	ANY TWO OF THE FOLLOWING COURSES											
2.		GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL			
3.		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL			
4.		INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL			
5.		NCC/NSS/RRC/YRC/STUDENT CLUBS/UNNAT BHARAT ABHIYAN/ SWACTH BHARAT	GEN	AC	0	0	2	0	NIL			
6.		SPORTS AND GAMES	PHED	AC	0	0	2	0	NIL			

-9-1- d-=+

TOTAL QUALITY	Category	L	Т	Р	Credit
MANAGEMENT	FC - HS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Total Quality Management concepts.

2. To practice the TQM principles.

3. To apply the statistical process control

4. To analyze the various TQM tools

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	Apply
Environment.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L
CO4	L	M	S	L	М	-	L	-	L	М	L	М	-	-	-
CO5	L	L	М	-	L	М	S	S	M	L	L	М	-	-	M
S- Stro	ong; M	-Medi	ium; I	L-Low	r										

\$-1.- d-=+

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts-Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting -- Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - **OC curve** - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA -Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

COURSE DESIGNERS:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

S.No	Name of the	Designation	Department	Mail ID	
	Faculty	8	I		

\$-1.- d-=+

1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

-g-1.- d-=+

ENGINEERING	Category	L	Т	Р	Credit
MANAGEMENT AND ETHICS	FC-HS	3	0	0	3

PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To Understand the principles of planning at various levels of the organisation.

2. To analyse and practice the concepts of organizing, staffing to higher productivity.

3. To apply the concepts related to directing and controlling.

4. To understand and apply the case studies to practice code of ethics in organisation.

5. To apply the ethical principles in working environment.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of planning principles in organization CO2: Apply the various strategies of organising and staffing process.

CO2: Apply the various strategies of organising and staffing process.ApplyCO3: Analyse various leadership skills and control techniques for shaping the
organization.Analyse

CO4: Understand and apply best ethical practices in organisation

CO5: Analyse and Apply relevant ethical practices in engineering.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Understand

Analyse

Apply

-	1	1	1	1	1		1	1				1		1	1	ſ	-
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	M	M	М	L	S	М	M	L	S	S	S	S	-	-	-	
	CO2	M	L	L	-	М	М	M	L	М	S	М	М	-	-	-	
	CO3	M	M	L	-	М	М	M	L	L	S	S	М	-	-	-	
	CO4	L	M	-	M	-	М	S	S	S	S	-	М	-	-	-	
	CO5	M	M	-	L	-	М	S	S	S	S	-	М	-	-	-	
2		3.6	3 / 11	T	T												

S- Strong; M-Medium; L-Low

SYLLABUS:

PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting -Objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure– types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

DIRECTING

Foundations of individual and group behavior – motivation – motivation theories – motivational -Techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – Communication – process of communication – barrier in communication – effective communication – communication and IT.

\$-1.- d-=+

CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of Computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

ETHICS IN ENGINEERING

Moral dilemmas -Uses of Ethical Theories- Engineering as Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger - Employed Engineers Rights and Duties- Collective Bargaining - Occupational Crime - Global Issues- Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

TEXT BOOKS:

1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.

2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.

3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

REFERENCES:

1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).

2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.

3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.

4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, (2004)

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

COURSE DESIGNERS:

00014	DE DESTONALIST			
S.No	Name of the Faculty	Designation	Department	mail id
1	M. Manickam	Associate Professor	Management Studies	manickam@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

- p-1- d-=+

		OP	ERATIONS N					Category	Ĺ	Т	Р	Credit	
XXX		0.						HSS	3	0	0	3	_
The contemporary uncertain business environment is forcing the organizations to adopt the latest tools, techniques and strategies for managing their resources in the most effective and efficient fashion. The topics of the course deals with the management of resources and activities that lead to production of goods of right quality, in right quantity, at right time and place in the most cost- impressive manner. The course focuses on the basic concepts, issues, and techniques adopted worldwide for efficient and effective operations. The topics include operations strategy, product design and development, forecasting, facility planning and layout, aggregate production planning, capacity planning, project management, production control, materials management, inventory and quality management, JIT and Kanban System. Prerequisite Not Required Course Objectives 1. To understand the Fundamentals of Operations.													
2. 10 U 3. To u	nderstand the	importance of	For Design a	and their relationship towards	s Et	ficie	ncy	3				-	
4 To ev	valuate the ma	importance of	nent with the	techniques								-	
5. To in	part the Oper	ation manage	ment Technic	ues to get rid of the Competi	tive	adv	vant	age.					
Course	Outcomes	5						0					
After suc	ccessful comple	etion of the cou	urse, students v	will be able to									
CO1. U	nderstand the	importance o	f Operations I	Managenet							Unde	rstand	
CO2. E	valuating the v	arious organi/	sation and sta	affing functions.							Eva	luate	
CO3. U	nderstand the	Impoprtance	Of Production	Planning and Control.							Unde	rstand	_
CO4. E	valuate the Va	arious Operati	on Manageme	ent Techniques.	to	taka		montitiv			Eva	luate	
advanta	age	alualing the v	anous invento	bry Management rechniques	10	lane	; 00	mpennive	-			liyse	
Mappin	g with Program	nme Outcome	es and Progra	mme Specific Outcomes							I		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1.	. S S L L S L L L L L												
CO2.	S	S	М	L	-	L	L	М	М	L	L	М	
CO3.	S	S	S	М	S	М	L	S	М	L	L	L	
CO4.	М	М	S	L	М	L	L	М	М	L	L	L	
CO5.	S	S	S	L	Μ	М	S	L	M	M	S		
S- Stron	g; M-Medium; I	L-Low							·				
				Syllabus									_
Operatio Operatio Operatio	ons Manageme ons Stratergy ons Managem	nt- Nature & S – Product Life ent- Plant Ca	Scope – Evolu Cycle- Value pacity - Plant	tion of Operatons Manageme Engineering concepts - Mak Location & Factors.	ent ke o	– Ty r Bu	/pes ıy D	of Prode	uctic Rec	on Sy ent 1	rstem, Trends	in	
	JOB DESIGN	& MATERIAL	HANDLING 9	of layout product layout, grou	unt	ech	nolo	av Javor	it fis	od r	ositio		
layout, design- studies.	Retail service Combining en	layout.Princip ngineering and	behavioral a	I handling-Material handling e pproaches, Work measureme	equ ent	ipm - me	ent. etho	Job-desi d analysi	gn: l s- E	Effect	tive jo omics	ib -Case	
Basic ty Plannin Plannin	pes of produc g and Control, g	tion- Intermin Process Plar	ent, Batch, co nning, Aggreg	ntinuous-Routing, Scheduling ate Production Planning, Cap	g, A bac	ity F	ating Plann	g and Mo ning: Int	onito rodu	ring- ctior	Prod I, Cap	uction acity	
UNIT IV	OPERATION '	TECHNIQUES	9 Hours										
Method. Program Evaluation and Review Technique (PERT), PERT Problems, PERT Problems, Time Cost Trade Off Production Control, Sequencing, Sequencing Problems-I, Sequencing Problems- II, Master Production Scheduling- Concept of Quality, Total Quality Management (TQM), Total Productive Maintenance (TPM), Statistical Quality Control (SQC), Six Sigma. UNIT- V INVENTROY MANAGEMENT 9 Hours													
Materia Problen Materia	ls Managemer ns, Production ls Requiremer	nt, Inventory (Quantity- Jus nt Planning (N	Control, st in Tir IRP)-II,	\$-1 d-;	=	F	¯co n€	nomic O ent Planr TOTAI	rder ning	Qua (MR	ntity (P)-I, : 45 H	EOQ):	
	OOKS		/										

1. The Encyclopedia of Operations Management: A Field Manual and Glossary of Operations Management ARTHUR V HILL 1st Edition

2. Handbook of Industrial Engineering: Technology and Operations Management, Gavriel Salvendy 3rd Edition.

3. Quality and Operations Management: Revised Edition.

4. Operations Management: Theory and Practice by Mahadevan

5. Production and Operations Management by PANNEERSELVAM. R.

S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. B. Rajnarayanan	Associate Professor & Head	Management Studies	rajnarayanan@vmkvec.edu.in							
2	Mr. T. Thangaraja	Associate Professor	Management Studies	thangaraja@avit.ac.in				l			
								-			
							 	 			
								-	 		
							 	 	 		
						ļ					
								-			
								-	 		
						 	 		 	.	
				611			 		 		
			-	p-1- d-	-	F					
					11			-	 	.	┢┝

	Category L T P Credit												edit				
				SOFT	SKILI	LS FOF	R ENG	INEER	S		FC-	HS	3	0	0		3
PREA Techni commu The ou compe	MBLE cal Eng inication itcome of tency in	lish is a n skills of the co English	a life si in Eng ourse is h langu	kill cou lish, es to help age and	rse nec sential the stu thereby	essary for unc dents a y makir	for all a derstand cquire ng the s	students ling an the lang tudents	s of En d expre guage sl compe	gineering ssing the kills of L tent and	g and 7 e ideas istenin employ	echno of di g, Spe able i	ology fferen eaking n the	. It aim at profe g, Read globali	ns at essior ing a sed s	develor nal co nd W scenar	oping ntext. riting io.
PRER	EQUIS	ITE: 1	NIL														
COUR	SE OB	JECTI	VES				· _										
1	1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.)																
2	2 To make them become effective communicators.																
3	3 To ensure that learners use Electronic media materials for developing language.																
4	4 To aid the students with employability skills.																
5	To de	velop th	ne stude	ents con	nmunica	ation sk	cills in f	formal a	and info	ormal situ	ations.						
COUR	RSE OU	тсом	IES														
On the	success	ful con	pletior	of the	course,	student	ts will b	be able	to								
CO1. I	Listen, re	ememb	er and r	respond	to othe	rs in di	fferent	scenari	0			Rem	nembe	r			
CO2. differe	Underst nt situat	and an ion.	d spea	k fluen	tly and	l corre	ctly wi	th cor	rect pro	onunciati	on in	Und	erstar	nd			
	- 1		1 .		C	• •	• .•						1				
CO3. 1	o make	the stu	dents e	xperts 1	n protes	ssional	writing					App	ly 1				
C04	10 make	the stu	donts ra	n promi	the rol	chnical	commu	nicator	in their			Арр	Iy				
busine	o make ss. techr	ical and	d scient	ific fiel	d		mincar	winnig	III uleii	careers	111	Ana	lvze				
MAPP	PING W	ITH P	ROGR		E OUT	COME	S AND	PRO	GRAM	ME SPE	CIFIC	OUT	CON	AES			
																	PSO
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012	PSO1	l PS	502	3
CO1	-	-	-	-	-	Μ	M	Μ	-	S	-		S	S		-	S
CO2	-	-	-	-	-	-	L	-	-	S	-		S	-		-	S
CO3	-	-	-	L	-	-	-	-	-	-	-		L	-		Μ	-
CO4	-	-	-	-	-	Μ	-	L	Μ	S	L		S	S		M	S
CO5	Μ	-	L	S	-	-	-	-	-	-	-		S	M		-	S
S- Stro	ong; M-	Mediu	m; L-L	ow													

-g-1.-d-=+

Course Code	Course Title	Category	L	Т	Р	С
	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	FC - HS	3	0	0	3

Course Objectives:

1. Development of a holistic perspective based on self- exploration

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -.Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours : 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

- p-1- d-=+

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COU	COURSE DESIGNERS												
S.NO	COURSE	DESIGNATION	NAME OF	MAIL ID									
	INSTRUCTOR		THE										
			INSTITUTION										
1	Dr.S.P.Sangeetha	Vice	AVIT	sangeetha@avit.ac.in									
		Principal(Academics)											
2	Dr.Jennifer G	HoD-H&S	AVIT	Jennifer@avit.a.cin									
	Joseph			_									

-P-1- d-=+

ENGINEERING MATHEMATICS	Category	L	Т	Р	Credit
	FC-BS	2	1	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE

NIL

COUR	SE O	BJECT	FIVES												
1	To re	call the	e advan	iced ma	atrix kı	nowled	ge to E	Enginee	ering pi	roblems					
2	To eq	uip the	emselve	es fami	liar wi	th the f	functio	ns of s	everal	variable	s.				
3	To in	nprove	their a	bility in	n solvi	ng geo	metrica	al appli	cations	s of diffe	erential	calculus	problen	ns	
4	To ex	amine	knowl	edge in	n multij	ple inte	grals.								
5	To improve their ability in Vector calculus.														
COUR	SE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	f the co	ourse, s	tudent	s will b	e able	to					
CO1. A	apply the	he con	cept of	orthog	onal re	eductio	n to di	agonali	se the	given m	atrix			Apply	
CO2. F	CO2. Find the radius of curvature, circle of curvature and centre of curvature for a given curve. Apply														
CO3. (finding	Classif statio	y the m nary po	naxima pints	and m	inima	for a gi	ven fu	nction	with se	everal va	riables,	through	by	Apply	
CO4. I	Find do	ouble in	ntegral	over g	eneral	areas a	nd trip	le integ	gral ov	er gener	al volun	nes		Apply	
CO5. <i>A</i>	Apply	Gauss]	Diverg	ence th	leorem	for eva	aluatin	g the s	urface	integral.				Apply	
MAPP	ING V	WITH	PROG	GRAM	ME O	UTCO	MES .	AND P	ROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2	PSO3
CO1	S	S	М					L				М			
CO2	S	S	Μ					L				Μ			
CO3	S	S	Μ					L				М			
CO4	S	S	Μ					L				Μ			
CO5	S	S	Μ					L				М			
S- Stro	ng; M-	Mediu	ım; L-I	LOW											

SYLLABUS

MATRICES:

Characteristic equation- Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES :

Curvature - Cartesian and Parametric Co-ordinates - Centre and radius of curvature - Circle of curvature.

Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method,

ORDINARY DIFFERENTIAL EQUATIONS:

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS:

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration(in both Cartesian and polar coordinates)-Change of order of integration

VECTOR CALCULUS:

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof),Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

TEXT BOOKS:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2020).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

REFERENCES:

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

COURSE	DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics	bhuvaneswari@avit.ac.in
2	Dr.G.Selvam	Associate Professor	Mathematics	selvam@vmkvec.edu.in

- p-1- d-=+

DIFFERENTIAL EQUATIONS AND	Category	L	Т	Р	Credit
TRANSFORMS	FC-BS	2	1	0	3

PREAMBLE

A signal is said to be a continuous time signal if it is available at all instants of time. A real time naturally available signal is in the form of time domain. However, the analysis of a signal is far more convenient in the frequency domain. These are three important classes of transformation methods available for continuous time systems. They are Laplace Transform, Fourier series and Fourier Transform. Similarly, Z- transform plays an important role in analysis of linear discrete time signals. Transform techniques are very important tool in the analysis of signals. Also To expose the students to the basics of wavelet theory and to illustrate the use of wavelet processing in engineering fields.

PREREQUISITE

Engineering Mathematics

COUR	RSE O	BJEC	ΓIVES												
1	Learn	n to use	e Fourie	er serie	s to rep	oresent	period	lical ph	nysical	phenom	ena in e	ngineeri	ing anal	ysis	
2	To ur	ndersta	nd how	the Fo	ourier s	eries is	s exten	ded to	aperio	lic signa	als in the	e form F	ourier tr	ansform	l
3	3 To understand the properties of Z-Transform and associating the knowledge of properties of ROC in response to different operations on discrete signals.														
4	4 To learn Laplace transform and it Inverse methods to solve differential transforms and integral transforms														
5	5 To understand the terminology that are used in the wavelet's literature														
COUR	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1. Explain fundamental understanding of Fourier series and be able to give Fourier expansions of Apply a given function.															
CO2. I	Demon	strate]	Fourier	Trans	form as	s a tool	for so	lving in	ntegral	equation	ns				Apply
CO3. S	Solve d	lifferer	nce equ	ations	by usir	ng Z tra	nsform	n techn	iques.	•					Apply
CO4.	Under: functio	stand ons and	the condition th	ncept olicatio	of Lap n to so	lace ti lve ord	ransfor linary o	m and differer	l inver ntial eq	se Lapl uations.	ace trar	sform	of varic	ous	Apply
CO5.L	Underst bases, c	and h	now to ors and	o use series	the 1 expans	nodern ions.	n sign	al pro	ocessing	g tools	using	signal	spaces	,	Apply
MAPP	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC O	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	М			-	L				М			
CO2	S	M	S	M				L				М			
CO3	S	M	S	Μ				L				Μ			
CO4	S	M	S	M				L				М			
CO5	S	M	S	M				L				Μ			
S- Stro	ong; M	I-Medi	ium; L	-Low											

- p-1- d-=+

Syllabus

FOURIER SERIES:

Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

FOURIER TRANSFORMS:

Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS:

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

LAPLACE TRANSFORMS:

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions-Inverse Laplace transform – Convolution theorem – -Solution of linear ODE of second order with constant coefficients.

WAVELET TRANSFROMATION:

Classes of wavelets: Haar, Daubechies, bi-orthogonal. Continuous Wavelet Transform (CWT): CWT and its Properties, Discrete Wavelet Transform- Haar scaling function - Nested spaces - Wavelet function- Designing orthogonal wavelet systems: Daubechies – Coiflet - Symlet wavelet system coefficients- Signal decomposition using DWT.

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. K. P. Soman, K. I. Ramachandran, "Insight into Wavelets: From Theory to Practice", Third Edition, PHI (2004).

REFERENCES:

- 1. "Engineering mathematics I & II", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr. A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- **3.** R. M. Rao and Ajit S. Bopardikar, "Wavelet Transform, Introduction to theory and Applications", Addison-Wesley (1998).

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Departmen t	Mail ID
1	Dr. L. Tamilselvi	Professor	Mathematic s	ltamilselvi@avit.ac.in
2	Dr. M. Vijayarakavan	Associate Professor	Mathematic s	vijayarakavan@vmkvec.edu.in

- p-1- d-=+

		SMART MATERIALS AND	Category	L	Т	Р	С			
		NANOTECHNOLOGY								
		Total Contact Hours: 45								
		Prerequisite: Physical Sciences	FC-BS	3	0	0	3			
Pream	ıble:									
This s	yllabus e	enables the students to learn the applications of smart mat	erials and uses of vari	ous sm	art eng	gineer	ing			
device	s. The s	syllabus also discusses about the nanomaterials, the	ir unique properties	and a	pplica	tions	s in			
variou	ıs fields	•								
Cours	e Objec	tives:								
1	Gain tl	he knowledge about the concepts of smart systems and var	rious smart materials.							
2	Realiz	e about the smart sensor materials which are used for Indu	strial Applications.							
3	Understand about the Industrial application oriented Smart materials' Actuators.									
4	To leas	rn the properties and classifications and importance of Nar	nomaterials							
-	TT 1		1.1 1	1						
5	Unders	stand the characteristic features of materials at nanoscale	and their potential app	licatioi	15					
COS	Cours	e Outcomes: On the successful completion of the course,	students will							
CO1	Learn	the smart-properties of various functional materials		Learn						
CO2	unders	tand the applications of different smart materials as sensor	rs	Under	stand					
	1			TT 1	· 1					
03	unders	tand the applications of different smart materials as actuat	ors	Under	stand					
CO4	Gather	r knowledge on unique properties of nanomaterials		Learn						
COS	Line of	Nenometerials for industrial applications		Acqui	r 0					
		Inanomaterials for industrial applications		Acqui	re					
CO6	Gain k	nowledge about nanomaterials in health care industry								

Mapping with Programme Outcomes and Programme Specific Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	POS1	POS2	POS3
	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO1															
	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO2															
	S	М	S	S	-	-	-	-	-	-	-	S	-	-	-
CO3															
	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO4															
	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO5															
	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-
CO6															

S – strong, M- Medium, L - Low

-9-1- d-=+

Syllabus

UNIT: I

Overview of Smart Materials: Introduction to Smart materials -piezoelectric materials - piezoelectricity magnetostriction materials - magnetostriction effect- shape memory alloys (SMA) - photoelastic materials photoelasticity.

UNIT: II

Smart material based sensors: Introduction to sensing technology - electric and magnetosrictive sensors - SMA based sensors - Infrared sensors - stress analysis by photoelastic sensors- Industrial Applications of smart sensors: Accelerometer and Biological DNA sensors.

UNIT: III

Smart Materials For Actuators: Introduction to smart actuators - piezoelectric actuators - magnetostrictive actuators - SMA based actuators - polymeric and carbon nanotubes based low power actuators -Industrial Applications: robotic artificial muscles, materials for bone substitutes and tissue replacement implants - smart polymeric materials for skin engineering

UNIT: IV

Materials in Nanoscale: Historical development of nanomaterials - Unit and dimensions - Classifications of nanomaterials - quantum dots, nanowires, ultra-thin films, nanoparticles, multilayered materials. Length Scales involved and effect on properties: mechanical, electronic, optical, magnetic and thermal properties.

UNIT: V

Selected Applications of Nanomaterials: Medical diagnostics - nanomedicine - targeted drug delivery -Biosensors; Information storage - nanocomputer - molecular switch - single electron transistors; design and fabrication of MEMS and NEMS devices.

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. Fundamental of Smart Materials, Editor: Mohsen Shahinpoor, RSC Publishers 2020
- 3. Charles P. Poole, Jr. and Frank J Ownes, "Introduction to Nanoscience and Nanotechnology", Wiley-Interscience Inc., Publication, 1st Edition, 2020.
- 4. Smart Material Systems And Mems Design And Development Methodologies by Vijay K Varadan, WILEY INDIA 2014.

REFERENCE BOOKS

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.
- 3. Nanotechnology, Second eition, M. A. Shah and K. A. Shah, Wiley Publishers 2019.
- 4. Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.

COURSE DESIGNERS

0001						
S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. B. DHANALAKSHMI	Asso. Professor	Physics	Dhanalakshmi.phy@avit.ac.in		
2	Dr G. SURESH	Asso. Professor	Physics	suresh.physics@avit.ac.in		
3	Dr. R. N. VISWANATH	Professor	Physics	rnviswanath@avit.ac.in		

\$-1- d-=+

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

			PART	IAL D	IFFEI	RENTI	AL E	QUAT	IONS	Categ	gory	L	Т	Р	Credit
				ANI) LINE	EAR A	LGEB	RA		FC-	BS	2	1	0	3
PREA	MBL	E	1 1						1.1			0.1		•11 1	1 . 1
Impart of the	: knowl applica	edge a tion o	bout the fourt is the second sec	ie subje l differ	ect of a ential e	single	variab ns. The	e and e cours	multivate also a	ariable.	The foc e opport	us of the unity to	e course the lear	will be t ner to un	he study derstand
linear	algebra	and it	s appli	cation	to engi	neering	3.			51.00 111	- oppoin				
PRER Differe	EQUI Ential E	SITE Equation	ons and	Transf	forms										
COUF	RSE O	BJEC	TIVES												
1	Famil	liarize	themse	elves w	ith the	functio	ons of a	a variet	ty of va	riables.					
2	To fa	miliar	with ap	oplicati	ons of	partial	differe	ential e	quatior	ıs					
3	To ha	ve the	knowl	edge o	f vecto	r space	& sub	spaces							
4	To ha	ve an	idea of	inner	oroduc	t space	s over	the fiel	d of co	mplex r	numbers				
5	Unde	rstand	linear	transfo	rmatio	n and i	ts prop	erties							
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	Form t	he par	tial dif	ferentia	al equa	tions a	nd find	l its sol	utions					Appl	У
CO2.	Apply 1	the pa	rtial dif	ferentia	al equa	itions i	n a vib	ration	of strir	ngs; hea	t-passing	; a rod	and two	- Appl	У
CO3.	Unders	tand th	ne conc	ent of	vector	space &	& subs	nace ar	nd to fi	nd the d	imensio	n of a ve	ector	Appl	V
CO4.	Unders	stand	nner p	roduct	space	conce	ots and	l apply	the co	oncept i	n vario	us linea	r system	1	/
related	l proble	ems.	1		1	-		11.2		1			2	Appl	У
CO5.	Compu	te the	linear t	ransfo	mation	ns and a	find ma	atrices	of gene	eral line	ar transf	ormatio	ns	Appl	У
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC C	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L				L				М			
CO2	S	S	M	L				L				М			
CO3	S	S	M	L				L				M			
CO4	S	S	M	L				L				M			
CO5	S	S	M	L				L				M			
S- Str	ong; M	[-Med	ium; L	-Low											

-\$-1.-d-=+

SYLLABUS

PARTIAL DIFFERENTIAL EQUATIONS:

Formation - Solutions of standard types f(p,q) = 0, Clairaut's form, f(z,p,q) = 0, f(p,x) = g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS:

Method of separation of variables – Solutions of one-dimensional wave equation and one-dimensional heat equation – Steady state solution of two-dimensional heat equation – Fourier series solutions in Cartesian coordinates

VECTOR SPACES:

Vectors in two-dimensional space and n dimensional space, subspaces and spanning sets properties of vector space, Linear combination of vectors, Linear independence and dependence of vectors, basis and dimension

INNER PRODUCT SPACES:

Inner product, norms - Gram Schmidt orthogonalization process - Adjoint of linear operations -Least square approximation

LINEAR TRANSFORMATION:

Linear transformations, linear operators, Properties of Linear Transformation, Algebra of Linear transformation, Matrix Representation of linear transformation, Linear map Associated with Linear Transformation

TEXT BOOKS:

1. Grewal, B.S., "Higher Engineering Mathematics", 35th Edition, Khanna Publishers, Delhi (2012).

2. Kennath M. Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, Pearson India Publishing, New Delhi, (2015).

REFERENCES:

- 1. Dr.A. Singaravelu, "Linear Algebra and Partial Differential Equations", Meenakshi Agencies, Chennai (2019).
- 2. Kreyszig, E., "Advanced Engineering Mathematics", (8th Edition), John Wiley and Sons, (Asia) Pvt. Ltd., Singapore (2012).
- 3. Dr.Gunadhar Paria, "Linear Algebra", New Central Book Agency (P) Ltd (2012).

COURSE DESIGNERS

1 Mrs.V.T.Lakshmi Associate Mathematics 1 Professor Iakshmivt@vmk	il ID
Associate	<u>kvec.edu.in</u>
2 Ms. S.Sarala Associate Professor Mathematics <u>sarala@avit.ac.in</u>	<u>n</u>

- p-1- d-=+

		ENVIRONMENTAL SCIENCES	Category	L	Т	Р	Credit			
		(Common to All Branches)	FC-BS	3	0	0	3			
Environm atmospher societal pr the variou environme	nental s ric scier roblems is issues ental qua	cience is an interdisciplinary field nees. Environmental studies deals and conserving the environment for s of environment and its managem ality in every aspect.	that integrates physical, with the human relation or the future. Environment the for sustainable deve	chemic ns to th ntal eng lopmen	cal, bi ne env ineeri t by i	ologic ironm ng foc mprov	al, <u>and</u> ent and cuses on ving the			
PREREQ	UISITI	E NIL								
COURSE	OBJE	CTIVES								
1	To inc natural	ulcate the knowledge of significance resources.	e of environmental studie	es and co	onserv	ation	of the			
2	To acq	uire knowledge of ecosystem, biodi	iversity, it's threats and th	ne need	for co	onserva	ation			
3	To gai	n knowledge about environmental p	oollution, it's sources, effe	ects and	l contr	ol me	asures			
4	4 To familiarize the legal provisions and the national and international concern for the protection of environment									
5	To be a monito	aware of the population on human h pring human health and environment	health and environment, ro t.	ole of te	echnol	ogy ir	1			
COURSE	OUTC	COMES								
On the suc	ccessful	completion of the course, students	will be able to							
CO1. Uno resources	derstand	the importance of environment	t and alternate energy	Under	rstand					
CO2. Initi ecosystem	iate the and bio	awareness and recognize the social odiversity conservation	responsibility in	Apply	7					
CO3. To d solve the p	levelop problem	technologies to analyse the air, wate s	er and soil pollution and	Apply	7					
CO4. To e regulations	evaluate s for a s	the social issues and apply suitable ustainable development	environmental	Evalua	ate					
CO5. To id health and	CO5. To identify and analyse the urban problems, population on human Analyse health and environment									

-\$-1- d-=+

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
S	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	_
0 0		1.1.1	1.	тт											

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT -- I ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and overexploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

UNIT –II ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids-Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

UNIT –III ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT

6 hrs

Sustainable Development- Water conservation – rain water harvesting, watershed management - Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

UNIT-V HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in

-P-1- 2-=7

environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Mail ID									
1.	Dr. K. Sanghamitra	sanghamitra.chemistry@avit.ac.in									
2.	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in									

- p-1. - d-=+

ELECTRIC CIRCUIT ANALYSIS	Category	L	Т	Р	Credit
(THEORY & PRACTICALS)	CC	3	0	2	4

PREAMBLE

Electric circuit theory is the fundamental theory upon which all branches of electrical engineering are built. Many areas of electrical engineering, such as power, electric machines, control, electronics, communications, and instrumentation, are based on electric circuit theory. Therefore, the basic electric circuit theory course is the most important course for an electrical engineering student, and always an excellent starting point for a beginner in electrical engineering education. Circuit theory is also valuable to students specializing in other branches of the engineering because circuits are a good model for the study of energy systems in general, and because of the applied mathematics, physics, and topology involved.

PREREQUISITE – BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES

1	To understand the basic circuit parameter and formulate the mathematical model of circuits using basic														
	Iaws. Gain knowledge to solve DC and AC circuits using network theorems. To understand series and parallel resonance concepts and analysis of coupled circuits.														
2	Gain kn	owledg	ge to so	lve DC	C and A	C circ	uits usi	ing net	work tl	neorems	•				
3	To understand series and parallel resonance concepts and analysis of coupled circuits.														
4	To study	y prote	ction o	f balan	ced an	d unba	lanced	loads	and me	easurem	ent of p	ower an	d power	factor i	n three
	phase ci	rcuits.													
5	To Appl	y the k	nowled	lge of	Digital	Comn	nunicat	tion cire	cuits ir	n various	s fields.				
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	CO1. Describe the various circuit laws and sources Remember														
CO2.	CO2. Apply Mesh, Nodal analysis to solve DC circuits Apply														
CO3.	CO3. Analyze of AC and DC circuits using various network theorems Analyze														
CO4.	Discuss	the bas	sic con	cepts c	of Reso	nance	circuits	s and it	s comp	onents.	Ţ	Jndersta	nd		
CO5.	Explain	Coupl	ed circ	uits wi	th help	of Ind	uctanc	e			ŀ	Apply			
MA	PPING V	WITH	PROG	RAM	ME O	UTCO	MES .	AND P	ROG	RAMM	E SPEC	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	S	S	S	L	М	L	-	Μ	S	М	М	-	-	-
CO2	S	S	Μ	S	L	-	-	-	-	-	-	-	-	-	-
CO3	S	Μ	-	S	S	-	М	-	М	L	L	М	-	-	-
CO4	М	Μ	Μ	Μ	S	-	Μ	-	-	L	L	Μ	-	-	-
CO5	М	Μ	Μ	Μ	S	-	Μ	-	Μ	L	L	М	-	-	-
S-St	rong; M	-Mediu	ım; L-I	LOW											

-P-1- d-=+

SYLLABUS

THEORY

BASIC CIRCUIT CONCEPTS:

DC and AC circuits - R, L, and C elements phasor diagrams-impedance, admittance - real and reactive powerpower factor. Formation of matrix equations and analysis of complex circuits using mesh- current and nodal voltage methods.

NETWORK THEOREMS AND TRANSFORMATIONS:

Voltage – Current – Source transformation. Star - Delta transformation, Superposition theorem – Reciprocity theorem – Substitution theorem – Maximum Power Transfer theorem – Thevenin's theorem – Norton's theorem.

RESONANCE AND COUPLED CIRCUITS:

Series and parallel resonance – Bandwidth and Q factor. Inductively coupled circuits – self and mutual inductance - co-efficient of coupling - Dot convention.

TRANSIENT ANALYSIS:

Transient response – natural and forced response. Transients in RC, RL and RLC circuit with DC and sinusoidal excitation.

THREE PHASE POWER MEASUREMENT

Analysis of three phase three wire and four wire circuits with star and delta connected balanced and unbalanced loads- phasor diagram of voltages and currents. Measurement of power and power factor in three phase circuits by using single, two and three watt meter methods.

PRACTICAL

Verification of the thevenin's, norton's, super position, reciprocity and maximum power transfer theorem. The domian analysis of RL and RC transient circuits. Series and Parallel resonance circuits. Three phase power measurement circuit by two wattmeter method.

Text Book

- 1. Dr.S. Arumugam, Premkumar, Circuit Theory Khanna publishers, 1991
- 2. Sudhakar, A. and Shyam Mohan S.P., 'Circuits and Network Analysis and Synthesis', Tata McGraw-Hill Publishing C.Ltd., New Delhi, 2006.

Reference Books

-P-1- d-=+

1. Prof.T.NageswaraRao,"Electric circuit analysis" A.R.Publications.

2. Hyatt, W.H. Jr and Kemmerly, J.E., 'Engineering Circuits Analusis', McGraw-Hill International Editions, 2002.

3. Edminister, J.A., 'Theory and Problems of Electric Circuits', Schaum's outline series McGraw Hill Book Company, 5 th Edition, 2011.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. B. Parvathi Sangeetha	Assistant Professor	EEE	parvathi.eee@avit.ac.in									
2	Mr. P. Loganathan	AP	EEE/VMKVEC	loganathan@vmkvec.edu.in									

- p-1. - d-=+

SEMICONDUCTOR DEVICES AND CIRCUITS	Category	L	Т	Р	Credit
	CC	3	0	0	3

PREAMBLE

This is an introduction course to semiconductor devices. The course begins with a discussion on how electron energy bands are formed in semiconductors. It examines the principles and operations of essential semiconductor devices used in today's electronics: diodes, light emitters, bipolar junction transistors and MOSFETs. It includes analysis of small signal model and large signal model of the devices which is the prerequisite for next level courses. This subject helps the students to design, model and develop amplifier circuits, Oscillator circuits, Tuned amplifiers and many other real time application circuits.

PREREQUISITE

Basics of Electrical and Electronics Engineering

COURSE OBJECTIVES											
1	To understand the small signal BJT/FET Models.										
2	Identify the frequency response of BJT and FET.										
3	Apply the basic concept and working of various types of feedback amplifiers and oscillators.										
4	To understand the working different types of large signal amplifiers.										
5	To learn about various types of tuned amplifiers										
COUF	COURSE OUTCOMES										
On the successful completion of the course, students will be able to											
CO1. I	CO1. Determine various factors for HWR, FWR and construct Clipper, Clamper and Apply										
voltage	e regulator circuits										
CO2.D	CO2.Determine the characteristics and parameters of BJT and FET in various Apply configuration										
CO3. I	CO3. Design the voltage divider bias for BJT, FET and justify stability factors. Apply										
CO4. <i>A</i>	CO4. Analyze various parameters of feedback amplifier (voltage series, voltage shunt, Analyze										
current	current series and current shunt) by using simulation tools.										
CO5.A	nalyze the efficiency of large signal amplifiers and bandwidth of tuned amplifier by	Analyze									
ı	using simulation tools.										

-P-1- d-=+

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-	-	-	-	М	М	-	_
CO2	S	М	М	М	-	-	-	-	-	-	-	Μ	М	-	_
CO3	S	S	М	М	-	-	-	-	-	-	-	М	S	L	L
CO4	S	S	Μ	Μ	М	-	-	-	-	-	-	Μ	S	M	L
CO5	S	Μ	Μ	Μ	М	-	-	-	-	-	-	Μ	S	M	L
S- Stro	ong; M	-Medi	um; L	-Low											

SYLLABUS

SEMICONDUCTOR DIODE AND ITS APPLICATIONS

PN Junction Diode –, Zener Diode- Characteristics -equivalent circuits, Diode current Equation, Light-Emitting Diodes, Half-Wave Rectification, Full-Wave Rectification, Bridge Rectifier, Voltage regulator- Line and Load regulation, Clipper, Clamper, Voltage-Multiplier Circuits,

TRANSISTORS & SPECIAL DEVICES

Transistor: Construction, Transistor Operation and characteristics- CE, CB, CC Configuration -Characteristics of JFETs, Transfer Characteristics, Depletion-Type MOSFET, Enhancement-Type MOSFET. Special Devices: SCR, Shockley Diode, Diac, Triac, Unijunction Transistor, Phototransistors, MISFETs, MESFET.

BIASING CIRCUITS & SMALL SIGNAL ANALYSIS

BJT Biasing : Fixed Bias Configurations, Emitter Bias Configuration, Voltage Divider Bias - AC /DC Load line-Operating Point -, Hybrid Equivalent model, stability factor, Small Signal Analysis of CE Amplifier. FET Biasing : Fixed bias, Self bias and Voltage divider bias, FET amplifiers – small signal model and Configurations using multisim simulation tool.

FEEDBACK AMPLIFIERS

Concept of feedback – effects of negative feedback- Input impedance- output impedance, voltage gain, current gain, Types of feedback amplifier-Voltage and Current Series, Voltage and Current Shunt, Gain Bandwidth Product.

POWER AMPLIFIERS & TUNED AMPLIFIERS

Power Amplifier : Class A, Push –Pull Amplifier-Class B, Class C & D amplifiers, Amplifier Distortion, Amplifier Efficiency. Tuned amplifiers: Single tuned, Double tuned, Synchronous tuned amplifiers –Stability of Tuned Amplifiers using multisim simulation tool.

TEXT BOOKS:

1.Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill,4hEdition, 2015. 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11thEdition, 2013

REFERENCE BOOKS:

David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5th Edition,2008.
D.Roychoudhury and shailB.Jain, —Linear Integrated circuits||, 4th edition, New Age International Pvt.Ltd, 2014.

3. Thomas L. Floyd, "Electronic Devices", 9th edition, Pearson Education, 2011.

\$-1- d-=+
COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Department	Mail ID					
1.	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in					
2.	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in					

-9-1- d-=+

				ELEC	CTRIC	AL MA	ACHIN	ES – I		Ca	ategory	L	Γ]	Р	Credit	
											CC	3	0 0	0	3	
PREA	MBLE															
Electr	ical Ma	achines	-I is c	concern	ed with	n the co	onstruc	tions, a	nalysis	of cha	racteristi	ics, test	ing and	application	ons of	
types	types of machines and transformers. This course aims to enable to work professionally in the Electrical															
Engin	Engineering Sector.															
Prerec	Prerequisite: Basics of electrical & electronics engineering.															
COUI	COURSE OBJECTIVE															
On the	e succe	ssful co	ompleti	on of t	he cour	se, stu	dents w	ill be a	able to							
1	To un	dersta	nd the c	concept	s of fie	ld ener	gy, co	energy	, mecha	anical	force and	l produo	ction of	torque an	d	
	EMF.															
	To an	alyze t	he perf	ormano	ce chara	acterist	tics of c	lifferer	it types	of DC	Generat	or.				
3	To an	alyze t	he perf	ormano	ce chara	acterist	ics of c	lifferer	it types	of DC	motors.					
4	To understand different types of Transformers, construction, working principle and their performance.															
5	5 To familiarize with the applications of DC machines and transformer.															
COUI	COURSE OUT COMES															
CO1:	learn th	ne conc	epts an	d laws	of elec	tromag	gnetic i	nductio	on in ro	tating	machines	3			Unde	rstand
CO2:	study c	onstru	ction, c	haracte	ristics	and ap	plicatio	ons of I	DC gen	erators	•				Unde	rstand
CO3:	3: Explain the construction, characteristics and application of DC Motors Understand						Analy	vse								
CO4:	Clarify	the sta	rter an	d speed	l contro	ol meth	od of I	DC Mot	tors Ap	ply					Evalu	ate
CO5:	Illustra	te the o	constru	ction a	nd worl	king of	Single	Phase	and Th	ree Ph	ase Tran	sformer	s Apply	' & to	Evalu	ate
Analy	ze the t	testing	of DC	Machir	nes & T	ransfo	rmer									
MAPI	PING V	VITH I	PROGR	RAMM	E OUT	COME	E AND	PROG	RAMN	AE SPI	ECFIC O	UTCO	MES			
COS	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	PO10	PO1	PO1	PSO	PSO	PSO3
	1	2	3	3	4	5	6	7	8	9		1	2	1	2	
CO1	S	L	L	L	-	-	L	-	L	-	L	L	-	S	L	-
CO2	S	S	L	Μ	-	L	-	-	L	L	L	L	L	S	Μ	-
CO3	Μ	S	L	Μ	L	L	-	-	L	-	L	L	L	S	Μ	-
CO4	S	Μ	М	L	L	М	L	-	Μ	-	М	L	Μ	S	L	-
CO5	S	M	M	L	L	М	L	L	L	L	L	M	М	S	L	L
S-STF	S-STRONG.M-MEDIUM.L-LOW															

Syllabus

BASIC CONCEPTS IN ROTATING MACHINES

Energy in Magnetic Systems-Field Energy and Co Energy-Determination of Mechanical Force- Singly and multiply excited systems -Laws of Electromagnetic induction - Torque and EMF production in rotating machines.

DC GENERATOR

Introduction – electric generator- Constructional features- Principle of operation of DC generator - EMF equation-circuit model - methods of excitation - Losses in DC generator –power stages –condition for maximum efficiency - armature reaction – compensating winding, Commutation - Operating Characteristics of DC generators - Parallel operation of DC generators - Applications of DC generators.

DC MOTORS

Principle of operation of DC motors - Back EMF - Torque Equation-Types of DC motors- characteristics of DC motors - Starting of DC motors: review of mechanical starter, electronic soft starters for DC motor with energy saving. Speed control: Field control, Armature control, voltage control– efficiency- Applications.

\$-1.- d-=7

TRANSFORMERS

Principle, construction and operation of single-phase transformers, equivalent circuit, phasordiagram, voltage regulation, losses and efficiency Testing - open circuit and short circuit tests polarity test, back-to-back test, separation of hysteresis and eddy current losses Three-phase transformer- construction, types of connection and their comparative features, Parallel operation of single-phase and three-phase transformers, Autotransformers – construction principle, applications and comparison with two winding transformer, Magnetizing current effect of nonlinear B-H curve of magnetic core material, harmonics in magnetization current Phase conversion - Scott connection, three-phase to six- phase conversion, Tap-changing transformers - No-load and on-load tap-changing of transformers, Three-winding transformers, Cooling of transformers.

TESTING OF DC MACHINES & TRANSFORMERS

Losses and efficiency –Condition for maximum efficiency - Testing of DC machines: Brake test, Swinburne's test, Retardation test, Hopkinson's test, Testing of transformer: polarity test, load test, Open circuit and short circuit test, Sumpner's test.

TOTAL : 45 PERIODS

TEXT / REFERENCES:

1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hil Education, 2013.

2. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons, 2007.

3. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004. 62 4. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

5. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

6. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

S.N	Name of Faculty	Designation	Department	Mail.id
0				
1	A.BALAMURUGAN	Associate .Professor	VMKVEC	balamurugan@vmkvec.edu.in
2				

- p-1- d-=+

				FLF	CTRIC	'AL M	ACHIN	JES –	Π		Categ	gory	L	Т	Р	Cr	edit
											C	С	3	0	0		3
PRE	AMBLE										1	I	1				
	In a n	nodern	world	the ele	ctric m	otor es	speciall	y Alte	rnating	current	t motor	rs and	Spe	cial ap	oplica	ations-	oriented
moto	rs has play	ved a le	eading	role in t	he high	n produ	ctivity	of mo	dern ind	dustry, a	and it is	therefor	e di	rectly	respo	onsible	for the
high	high standard of living being enjoyed throughout the industrialized world. Hence the course provides the knowledge about																
the ba	the basic study and performance analyzing techniques of AC machines and Special electrical machines.																
PRE	PREREQUISITE: Electrical Machines – I																
COU	COURSE OBJECTIVES																
1	To determ	nine the	e voltag	ge regula	ation of	f an alte	ernator	from i	ts work	ing prin	ciples						
2	2 To describe the synchronous motor operating principle and analyze the synchronous motor withdifferent																
	excitations.																
3	To explain the working principle of single phase and three phase induction motor and determine their applications																
	from their characteristics.																
4	4 To employ the different starting and speed control methods of three phase induction motor.																
5	5 To describe the construction and principle of operation of single phase induction motor and various machines which																
	is involve	ed in sp	ecial A	pplicati	ons.												
COU	RSE OUT	ГСОМ	ES														
On th	ne successf	ùl com	pletion	of the o	course,	student	s will t	e able	to								
CO1:	Identify t	he part	s and p	redetern	nine the	e perfoi	mance	of syn	chrono	us genei	rator by	varies ty	ypes	of		Reme	mber
volta	ge regulati	on met	hods.													100000	1110 01
CO2:	Explain t	he prin	ciple of	peration	and pe	erforma	nce cha	racteri	istics of	f synchr	onous n	notor.				Unde	rstand
CO3:	Analyze t	he cha	racteris	tics of t	hree ph	ase ind	uction	motor	through	n its equ	ivalent	circuit a	nd c	rcle		Analy	ze
	diagram.																2.
CO4:	Apply sui	table s	tarting	and spe	ed cont	rol met	hods to	enhar	nce the	perform	ance of	three pl	nase			Apply	/
	induction	motor	s.													11.2	
CO5:	CO5: Evaluate the performance of special machines and can able to choose the suitable starting methods																
of single phase induction motor.																	
MAF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO	02	PSO3
CO1	S	-	-	-	-	-	-	S	-	-	-	-		М		L	-
CO2	S	M	_	M	_	-	_	M	_	-	_	_		M	ו	M	_

-g-1.-d-=+

Μ

М

Μ

-

-

-

-

-

-

-

-

-

-

М

Μ

-

-

-

Μ

М

S

-

-

-

Μ

S

S

CO3

CO4

CO5

S

S

S

S- Strong; M-Medium; L-Low

S

М

L

-

-

Μ

Μ

М

L

-

-

L

-

L

L

SYLLABUS SVNCHDONOUS CENE

SYNCHRONOUS GENERATOR

Construction - Armature Winding - Winding Factors - EMF Equation - Armature Reaction - Voltage Regulation - Predetermination of Regulation by Synchronous Impedance, MMF and Potier Methods - Power Flow Equations - Parallel Operations - Synchronization and Synchronizing Power - Synchronizing to Infinite Busbar - Slip Test.

SYNCHRONOUS MOTOR

Construction - Specific loading - output equation - main dimensions(D&L), Principle of Operation - Methods of Starting - Phasor Diagrams - Power Flow Equations - Effect of Varying Field Current and Load - V and Inverted V Curves - Synchronous Condenser - Hunting and Suppression Techniques.

THREE PHASE INDUCTION MOTOR

Construction - Specific loading - output equation - main dimensions (D&L) - Types - Principle of Operation - Equivalent Circuit - Phasor Diagram - Power across Air-gap, Torque and Power Output - Slip -Torque Characteristics - No-Load and Blocked Rotor Tests - Circle Diagram - Cogging and Crawling - Braking - Induction Generators- Applications

STARTING AND SPEED CONTROL OF THREE PHASE NDUCTION MOTOR

Need and necessity of starting and starters - types of starters - stator resistance and reactance starters, rotor resistance starter, auto transformer and star-delta starters – Need of speed control – Types - change of voltage - change of number of poles - change of frequency - cascade connection - slip power recovery scheme.

SINGLE PHASE INDUCTION MOTOR AND SPECIAL MACHINES

Construction of Single Phase Induction Motor - Double revolving field theory - Equivalent Circuit - Load Characteristics - Starting Methods of Single Phase Induction Motor - Variable Reluctance Motor - Stepper Motor - Hysteresis Motor - AC Series Motor - Repulsion Motor - Linear Induction Motor - Universal Motor- Servo Motor - Permanent Magnet DC and AC motors – Applications

TEXT BOOKS

- 1. Nagarath.I.J. and Kothari.D.P., "Electric Machines", T.M.H. Publishing CoLtd., New Delhi, 4th edition 2010.
- 2. M.G.Say, "Performance and Design of Alternating Current Machines", 3rd Edition, CBS Publisher.
- 3. B. L. Theraja, A. K. Theraja, "A Text Book of Electrical Technology", Volume II, S.Chand & Company Ltd, New Delhi, 2007.
- 3. Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016.

REFERENCES

- 1. Gupta., "Theory and Performance of Electrical Machines", Kataria and Sons, 14th edition 2009.
- 2. A. E. Fitzgerald, Charles Kingsley, Jr.Stephen D. Umans, "Electric Machinery", Sixth Edition, Tata McGraw Hill Publishing Company Ltd., 2002.
- 3. Raj put R.K, "Electric Machines", Lakshmi publication, fifth edition, reprinted at 2011.

COURSE DESIGNERS									
S. No.	Name of the Faculty	Designation	Department	Mail ID					
1.	Dr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in					
2.	Dr.R.Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in					
3.	Mr.S.Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in					

\$-1- d-=+

				FLFC	TRO	MAG	VETIO	⁻ тнг	ORV			Catego	ry :	L	Т	Р	C
			-							CC		3	0	0	3		
Preamble	e																
To introdu	To introduce the fundamentals of electromagnetic fields, waves and their applications in Engineering.																
PREREC	PREREQUISITE : Engineering Mathematics																
COURSI	E OBJ	ECTIV	VES														
1		To c inter	onvey action	the ba s betw	sic phy een ch	ysical arged	concep particl	ots that es, wh	t lie be ether s	hind a station	ll elect ary or i	rical eng n motior	ineerir 1.	ıg, i	the		
2		To fa	amiliar	ize wit	h the c	oncept	s of M	agneto	statics	s and th	neir app	olications					
3	3 To understand Faraday's laws, Maxwell's equations, induced EMF and their applications.																
4		To le	'o learn the concept of Electromagnetic Fields, waves and wave propagation.														
5	5 To understand the concepts of field modeling and computation.																
COURSI	COURSE OUTCOMES																
On successful completion of the course, the students will be able to																	
CO 1To determine the electric field intensity from the stationary charge distributions and to analyze the electric fields using electromagnetic laws with the associated boundary conditions.								Understand			nd						
СО	2	To a	nalyse	time v	varying	g elect	ric and	l magn	etic fie	elds.					Remember		er
СО	3	Com capa	pare tl citanco	he elec e and i	tric an nducta	id mag ince	netic l	oounda	ary con	dition	s, calcı	late the		Remember			er
СО	4	Sum med	marise ium.	e the el	ectric	magne	etic wa	ves an	d wav	e propa	agation	in diffe	rent		Ар	ply	
C0 :	5	Com	pute F	ield M	odeling	g & Co	mputa	tion							Unde	rstan	nd
Mapping	Mapping with Programme outcomes and Programme Specific Outcomes																
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1]	PSO2	PS	03
CO1	S	S	L	-	-	S	S	-	-	L	-	-	-		-		L
CO2	М	_	М	_	S	L	М	-	М	L	-	-	_		-		L
CO3	М	_	М	_	S	L	М	-	-	L	-	-	-		-		-
CO4	S	-	S	-	S	М	М	L	-	L	М	-	L	+	М		-
CO5	S	М	S	S	S	М	S	-	М	L	L	М	_		-		-

-\$-1.-d-=+

ELECTROSTATICS

Introduction– Sources and effects of electromagnetic fields - Difference between field theory and circuit theory - Charge - Coulomb's law - Continuous charge distribution - Electric field intensity - Electric flux - Gauss's law and its Applications - Potential - Laplace and Poisson's equations -Electrostatic energy –Capacitance- boundary value problems

MAGNETOSTATICS

Current Density - Magnetic field - Magnetic flux - Magnetic flux density - Biot-Savart's law - Ampere's law - Torque - Force - Scalar and Vector Magnetic potential - Boundary value problem - Energy Density

ELECROMAGNETIC FIELDS

Faraday's law - Lenz's law - Self inductance - Mutual inductance - Co-efficient of coupling - Dot rule for coupled circuits - Series, Parallel - Inductance of solenoid, Toroid, Maxwell's equations (boundary conditions) - Displacement current - Eddy current.

ELECTROMAGNETIC WAVES

Introduction - Derivation of Wave Equation, Uniform Plane Waves - Conducting media - Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect, Poynting theorem.

FIELD MODELLING AND COMPUTATION

Problem formulation - boundary conditions – solutions - analytical methods - variables separable methods - conformal transformation - method of images - numerical methods - finite difference method - finite element method - charge simulation method.

TEXTBOOK

- 1. John D. Kraus, "Electromagnetics with application" McGraw Hill, 5th edition, 2011.
- 2. William Hayt, "Engineering Electromagnetics", McGraw Hill, New York, 7th edition, 2014.
- 3. Kraus and Fleish, Electromagnetics with Applications, McGraw Hill International Editions, Fifth Edition, 2008

REFERENCES

- 1. K. A. Gangadhar, P.M. Ramanathan, Electromagnetic Field Theory, Khanna Publishers, Sixteenth Edition, 2011.
- 2. M. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Publication, 2014
- 3. A.Pramanik, "Electromagnetism Theory and applications", PHI Learning Pvt. Ltd, New Delhi, 2009.

Sl No	Name of the Faculty	Designation	Department	Mail ID		
1	S.Prakash	AP(Gr-II)	EEE/AVIT	sprakash@avit.ac.in		
2	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu		

- p-1- d-=+

MEASUREMENTS AND INSTRUMENTATION
(THEORY AND PRACTICALS)

Category	L	Т	Р	С
CC	3	0	2	4

Preamble

S

S

CO5

Μ

Μ

This course introduces principle of operation of basic analog and digital measuring instruments for measurement of current, voltage, power, energy etc. Measurement of resistance, inductance and capacitance by using bridge circuits will be discussed in detail and to develop skills in designing and conducting experiments related to applications of measuring instruments.

PRERE	QUISI	TE : E	Basics	of Ele	ctrica	l and	Electr	onics	Engin	eering	8					
COURS	E OBJI	ECTIV	VES													
1		To ii	ntrodu	ce the	fundar	nentals	s of ele	ectrical	and el	ectron	ic instr	uments				
2		To u	o understand the working principles of the electrical and electronic meters													
3		To U	o Understand the working principle of AC, DC bridges.													
4	4 To train the students in the measurement of displacement, resistance, inductance, torque and angle															
COURS	E OUT	COM	ES													
On succe	essful c	omple	tion of	f the co	ourse,	the stu	udents	s will b	e able	to						
CO 1 Explain the functional elements, characteristics, standards and calibration of measuring instruments.								on	Apply							
СО	2	Desc	cribe th	ne wor	king o	f vario	us elec	ctrical	and ele	ctronic	e meter	`S		Understand		
CO	3	Dete	ermine	unkno	wn va	lues us	ing br	idges.						Understand		
СО	4	Desc	cribe th	ne oper	ation (of stora	age and	d displ	ay dev	ices.				Understand		
CO	5	Expl	lain the	e work	ing of	variou	s trans	ducers	, ADC	and D	AC.			Apply		
Mapping	with P	rogram	ime ou	tcome	s and H	Prograi	nme S	pecific	e Outco	omes						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	L	М	-	М	-	-	S	-	М	-	S	М	М	
CO2	М	L	М	М	-	-	-	-	-	-	-	-	М	-	-	
CO3	S	М	S	L	-	-	-	S	М	-	-	-	S	М	-	
CO4	М	М	L	S	-	_	-	М	-	-	М	М	S	М	-	
I		1	1	1	1								1		1	

- p-1- d-=+

Μ

S

S

INTRODUCTION

Functional elements of an instrument - static and dynamic characteristics – errors in measurement - statistical evaluation of measurement data - standard and calibration

ELECTRICAL AND ELECTRONICS INSTRUMENTS

Principle and types analog and digital ammeters and voltmeters – single and three phase Wattmeters and Energy meter– instrument transformers – instruments for measurement of frequency and phase.

COMPARISON METHODS OF MEASUREMENTS

D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques

STORAGE AND DISPLAY DEVICES

Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger

TRANSDUCERS

Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors.

PRACTICE

Experiment on Transducer & AC Bridges, Calibration of Current Transformer, Instrumentation amplifiers, Calibration of Single phase Energy meter.

TEXTBOOK

- 1. A.K. Sawhney, Puneet Sawhney, 'A Course In Electrical And Electronic Measurements And Instrumentation ', Dhanpat Rai and Co,2012.
- 2. Doebelin E.O. and Manik D.N., Measurement Systems Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.

REFERENCES

- 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2017.
- 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997.
- 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.
- 4. John P. Bentley, 'Principles of Measurement Systems', III Edition, Pearson Education, 2000.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	S. Jensie Anita	Q-1-d-	===	jensiepresley@avit.ac.in

2	Mr. P. Loganathan	AP	EEE/VMKVE C	loganathan@vmkvec.edu.in
			-	

-g-1.-d-=+

ANALOG AND DIGITAL CIRCUITS	Category	L	Т	Р	Credit
(Theory and Practicals)	CC	3	0	2	4

PREAMBLE

One of the most important reasons for the unprecedented growth of Digital Electronics and systems is the advent of integrated circuits(ICs).Developments in the IC technology have made it possible to fabricate complex digital circuits such as microprocessors, memories and FPGAs etc. This course provides various methods and techniques suitable for a variety of digital system design applications.

PREREQUISITE

Semiconductor Devices And Circuits

COURSE OBJECTIVES											
1	To understand the small signal BJT/FET Models										
2	2 To learn about various compound configurations of multivibrators										
3	3 To impart the design knowledge of various combinational logic circuits and sequential circuits										
4	4 To understand the basics of hardware descriptive language										
5	To design the various sequential logic circuits										
COURSE OUTCOMES											
On the	On the successful completion of the course, students will be able to										
CO1. oscilla	Apply the basic concept and working of various types offeedback amplifiers and ators.	Apply									
CO2. 1	Design different multivibrators & compound Configurations Circuits.	Apply									
CO3.	Apply the principles of Boolean algebra to manipulate and minimize logicexpressions	Apply									
CO4. D	Design various combinational logic circuits (adder, subtractor, multiplexer and coders,	Analyze									
etc.,)											
CO5.I	Design various sequential circuits using flip flops (counters, shift registers, etc.,)	Analyze									

- p-1- - -==

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	М	-	-	-	-	-	-	-	-	М	М	-	_
CO2	S	M	М	М	-	-	-	-	-	-	-	М	М	L	-
CO3	S	M	М	М	Μ	-	-	-	-	-	-	Μ	S	M	-
CO4	S	S	М	Μ	-	-	-	-	-	-	-	М	S	M	-
CO5	S	S	М	S	-	-	-	-	-	-	-	М	S	M	L
a a.			•	-											

S- Strong; M-Medium; L-Low

SYLLABUS

OSCILLATOR CIRCUITS

Concept of feedback – effects of negative feedback-Barkhausen Criterion – Oscillator Circuits: Oscillator Principles – LC oscillators – Hartley oscillator, Colpitts Oscillator, Clapp Oscillator, RC Phase shift oscillators, Sweep oscillator-Wein Bridge Oscillator-Crystal oscillators - Demonstration With Relevant Experiments

COMPOUND CONFIGURATIONS AND MULTIVIBRATORS

Introduction, Cascade Connection, Cascode Connection, Darlington Connection, Differential Amplifier Circuit, CMRR, Schmitt Trigger. Multivirators- Astable –bistable – Monostable-- Demonstration With Relevant Experiments

BOOLEAN ALGEBRA, LOGIC GATES & GATE –LEVEL MINIMIZATION:

Introduction, Boolean Algebra, basic theorem & properties of Boolean Algebra, Boolean functions, canonical & standard forms, logical operations, logic gates, Integrated circuits, Map method-upto four variable Kmaps, Product of Sums (POS) & Sum of Products (SOP) simplification, don't care conditions, NAND & NOR implementations, Exclusive-OR Function, Hardware Description Language(HDL)- - Demonstration With Relevant Experiments

COMBINATIONAL LOGIC

Introduction, Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder,

Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Code Converters, Encoders, Decoders, Multiplexers-- Demonstration With Relevant Experiments

SYNCHRONOUS SEQUENTIAL LOGIC, REGISTER & COUNTERS

Sequential circuits, storage elements: latches, flip flops, Analysis of clocked sequential circuits, Moore and Mealy circuits ,state diagram, state reduction & Assignment, design procedure, shift registers, ripple counters, synchronous counters-- Demonstration With Relevant Experiments

Text Books:

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill,4thEdition, 2015.
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11thEdition, 2013
- 3. Morris Mano, "Digital Design (with an introduction to the verilog HDL)", Prentice-Hall of India.
- 4. John F. Wakerly, "Digital Design Principles & Practices", 4th edition, Prentice-Hall, 2005.

Reference Books:

1. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.

2. D.Roy choudhury and shail B.Jain, —Linear Integrated circuits, 4th edition, New Age International Pvt.Ltd, 2014.

3. Thomas L. Floyd, "Electronic De Vranesic, "Fundamentals of Digital Logi P-l-l-l-; 2011. Stephen D. Brown, and Zvonko IcGraw Hill, June, 2007. 4. William Kleitz, "Digital Electronics: A Practical Approach with VHDL", Ninth Edition, Pearson, 2002.

COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in								
2.	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in								

-g-1- d-==

POWER ELECTRONICSAND DRIVES	Category	L	Т	Р
(THEORY & PRACTICALS)	CC	3	0	2

PREAMBLE

Power electronics involves the study of electronic circuits intended to control the flow of electrical energy. It do processing and control of 'raw' electrical power from anelectrical source such as an AC mains supply, a bat photovoltaic array, or a windturbine into a form and quality suitable for a particular electrical load. It is an enablin with a very wide range of applications. Electric Drives, both ac and dc types, come in many shapes and arestandardized versions for general-purpose applications. Others are intended for specifictasks. In any case, moto selected to satisfy the dynamic requirements of themachines on which they are applied without exceeding temperature. To acquire the practical knowledge in power electronic devices and converters.

r									
PRERE	PREREQUISITE: SemiconductorDevices and Circuits								
COURSEOBJECTIVES									
1	Toget an overview of different types of power semiconductor devices and their switching characteristics.								
2	Tounderstandtheoperation, characteristics and performance parameters of controlled rectifiers.								
3	Tostudytheoperation, switchingtechniques and basics topologies of DC-DC switching regulators.								
4	TostudytheoperationofACvoltagecontroller and tolearn thedifferentmodulationtechniquesinverters.								
5	To employ the solid states peed control techniques for DC drives for efficient control.								
6	Toemploysolidstatespeedcontroltechniquesfor ACdrivesforproficientandlosslesscontrol.								
7	To Analyze the performance of semiconductor devices and converters through experiments.								

COURSEOUTCOMES

Onthesuccessful completionofthecourse, students will be able to

|--|

Re semiconductorphysicstothepropertiesofrealpowersemiconductordevicesanddifferentiatefromlowpowerdevices. CO2: Implement rectifiers and inverters for the given application

CO3: Implement DC-DC converters and AC-AC converter for the given application

CO4: suitablemotordrive U Interpret theconceptsofanelectricaldrivesystemandchoosea fordifferentapplications&Explain the basics and advantages of electric drives.

CO5: Appraise the conventional speed control methods of AC motors withstartingandbrakingmethods. Ana CO6: Validate the proficient control of AC and DC drives by utilize the power electronic sconcepts. Eva

Å

C07: Analyze the performance of semiconductor devices and converters by conducting suitable

experiments.

MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMME SPECIFICOUTCOMES

						_								
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC
CO1	S	М	S	M	S	L	M	-	L	L	S	М	L	S
CO2	S	S	S	M	М	L	M	-	L	М	S	М	М	S
CO3	S	S	S	M	М	L	M	-	L	L	S	М	М	S
CO4	S	S	S	S	S	М	M	-	M	L	S	М	L	M
CO5	S	S	S	M	S	М	М	-	L	M	S	Μ	L	S

\$-1- d-=+

CO6	S	S	S	S	S	M	M	-	M	M	S	M	L	S
C07	S	M	L	L	M	-	-	-	S	-	М	-	-	S
S-Stron	g;M-M	ledium;	L-Low-	-										

POWERSEMI-CONDUCTOR DEVICES

Overviewofswitchingdevices - Principles of operation, Characteristics, Protection and Gate dri ofPowerDiode,PowerTransistor,MOSFET,IGBT,SCR andTRIAC - Design of filters.

RECTIFIERS& CHOPPERS

Singlephaseandthreephase rectifiers - Dualconverters.BasicPrinciplesofChoppers-Stepdownandstepupchopper-Timeratiocontrolandcurrentlimitcontrol-Buck,Boost,Buck-Boostconverters.

INVERTERS & AC-ACCONVERTERS

Singlephaseandthreephase[120°&180° mode] Voltage Sourceinverters–Current SourceInverters - Regeneration i - PWMtechniques–SinglephaseandthreephaseACvoltagecontrollers –singlephaseandthreephasecycloconv Cycloconverter Control Scheme.

ELECTRICALDRIVES

General electric drive system - Classification and TypesofElectricalDrives –Factorsinfluencingtheselection drives– Torque-speed characteristics of motors- heating andcoolingcurves–classesofduty–Selection of motor p simpleproblems.

SOLIDSTATEDRIVES

Advantagesofsolidstatedrives–Speed control methods of DCmotorsusingrectifiersandchoppers–Speed controlofinductionmotorbyStator Voltage control, Voltage / Frequency control -Slippowerrecoverysystems.

PRACTICE

CharacteristicsofSCR, MOSFET and IGBT. ConverterfedDC MotorDrive.InverterfedInductionMotorDrive

TEXTBOOKS:

1. RashidM.H., "PowerElectronicsCircuits, Devices and Applications", PrenticeHallIndia, 3rdEdition, NewDelhi, 200-2. G.K. Dubey "Fundamental Electrical Drives" second edition 2002, Narosa Publications, Second edition, 2002.

REFERENCES:

- 1. Cyril.W.Lander,"PowerElectronics",McGraw HillInternational, ThirdEdition, 1993.
- 2. P.S.Bimbra"PowerElectronics", KhannaPublishers, thirdEdition2003.
- 3. PhilipT.Krein, "ElementsofPowerElectronics"OxfordUniversityPress,2004Edition.
- 4. N.K.De., P.K.Sen"ElectricDrives", PrenticeHall, Firstedition 1999.
- 5. Pillai, S.K., "A FirstcourseonElectricalDrives", WileyEasternLtd., New Delhi, 1982

COUR	SEDESIGNERS			
S.No.	Nameof the Faculty	Designation	Department	MailID
1	Dr. R. Sankarganesh	AssociateProfessor	EEE/VMKVEC	sankarganesh@vmkv
2	Mr.N.P.Gopinath	Assistant Professor(Gr-II)	EEE/AVIT	Gopinathnp@avit.ac.

\$-1.- d-=+

TRANSMISSION & DISTRIBUTION

Category	L	Т	Р	С
CC	3	0	0	3

Preamble

It is concerned the function of different components used in Transmission and Distribution levels of power systems and modeling of the components, enrich with the fair knowledge in the recent trends in power Transmission and

PREREQUISITE: ELECTRO MAGNETIC THEORY

COUR	SE OB.	JECT	IVES															
1	To study the structure of electric power system and to develop expressions for the computation of transmission																	
2	To obtain the equivalent circuits for the transmission lines based on distance and to determine the voltage regulation and efficiency.																	
3	To study different types of insulators and constructional features of HT & LT cables.																	
4	To study the classification and functions of major components of substations.																	
5	5 To understand the structure of AC and HVDC Transmission systems and its various operating voltages.																	
COURSE OUTCOMES																		
On successful completion of the course, the students will be able to																		
CO 1	Explain the importance and the functioning of transmission line parameters. Understand																	
CO 2	Model the transmission lines and analyse their performance Analyze																	
CO 3	Explain the knowledge of line insulators and underground cables. Understand																	
CO 4	Describe the components of substation and grounding. Understand																	
C0 5	Comp	are the	e HVD	C and A	AC syst	ems and	d analy	yse the	perform	nance of	AC dist	tributio	n	Anal	yze			
Mappin	g with	Progra	mme o	utcome	s and P	rogram	me Sp	ecific C	Outcom	es			·					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	S	М	L		S	L	М			-		L	S	S				
CO2	S	Μ	S		S	L	-			-		L	S	S	L			
CO3		Μ	Μ		-	L	Μ			-		Μ	L		L			
CO4		М	-		-	М	-			-		L	M					
CO5	S	M	М		-	М	M			-		L			М			

- p-1- d-=+

TRANSMISSION LINE PARAMETERS

Structure of electrical power system: Parameters of single and three phase transmission lines with single and double circuits: Resistance, inductance and capacitance of solid, stranded and bundled conductors: Symmetrical and unsymmetrical spacing and transposition - Application of self and mutual GMD - Skin and Proximity effects - Interference with neighboring communication circuits, Simple diagrams of typical towers and conductors for 400, 220 and 110 kV operations

MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Classification of lines: Short line, medium line and long line - equivalent circuits, attenuation constant and phase constant, surge impedance, transmission efficiency and voltage regulation - Sag tension calculation: Factors affecting sag, Support at same level, Effect of ice and wind, Total length of conductor, Equivalent span, Support at different levels - Ferranti effect, Phenomena of corona and its losses.

LINE INSULATORS AND UNDERGROUND

Purpose and requirement of insulators – material for insulators – types of insulators – failure and testing of insulators – voltage distribution over a string of suspension insulators – string efficiency – equalization of potential across each unit – Corona and it's effect (problems in voltage distribution over a string of insulators)

Underground cables :- Advantages of cables - classification of cables - belted cable - oil filled cables - advantages and

SUBSTATION , GROUNDING SYSTEM AND DISTRIBUTION SYSTEM

Bus-bar arrangements – substation bus schemes – single bus, double bus with double breaker, double bus with single breaker, main and transfer bus, ring bus, breaker- and - a half with two main buses, double bus-bar bypass isolators. Importance of earthing in a substation. Qualitative treatment to neutral grounding and earthing practices in substations. Feeders, distributors and service mains. DC distributor – 2 - wire and 3 - wire, radial and ring main distribution. AC distribution - single phase and three phase 4 -wire distribution.

AC TRANSMISSION & HVDC TRANSMISSION

Typical layout of AC power supply scheme – influence of voltage on conductor materials – limits of line voltage – Kelvin's law – It's limitations – OH lines –line supports – various types of supports with their applications,

High voltage DC transmission – HVDC projects in INDIA and abroad – advantages and disadvantages of HVDC transmission – basics of protection of HVDC system.

TEXTBOOK

1. B.R.Gupta, 'Power System Analysis and Design', S.Chand, New Delhi, 2005.

2. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, 2004.

3. Veerappan.N and Krishnamurthi .S.R,' Power Systems Switch Gear and Protection' ,S.Chand Edition 2009.

4. Ravindranath, B and Chander, N, 'Power System Protection and Switchgear', Wiley Eastern Ltd., 1977

REFERENCES

1. Luces M.Fualkenberry ,Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 1996.

2. HadiSaadat, 'Power System Analysis,' Tata McGraw Hill Publishing Company', 2003.

3. V.K.Mehta, Rohit Mehta,' Principles of power system', S.Chand & Company Ltd, New Delhi, 2013.

4. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi.

5. Wadhwa, C.L., 'Electrical Power Systems', New Age International (P) Ltd., Publishers, 1995.

Sl No	Name of the Facultv	Designation	Department	Mail ID
1	Jensie Anita S	P-1- 2-	=7 E	jensiepresley@avit.ac.in
	/			

CONTROL SYSTEMS	Category	L	Т	Р	Credit
CONTROL STOTEMS	CC	3	0	0	3

PREAMBLE

This course shall introduce the analysis and regulation of the output behaviors of dynamical systems subject to input signals. The course focuses primarily on using Laplace and frequency-domain techniques. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems. At the end of this course, one should possess in-depth knowledge of concepts from classical control theory, understand the concept of transfer function and use it for obtaining system response, analyze dynamic systems for their stability and performance, and design controllers (such as Proportional-Integral-Derivative) based on stability and performance requirements.

PREREQUISITE

Differential Equations and Transforms

COURSE OBJECTIVES															
1	Unde	erstand	the fe	edback	and fo	eed-for	ward c	ontrol;	; apply	represe	ntations	s of con	trol syst	tems.	
2	To fi MAT	nd tim TLAB.	e respo	onse of	given	contro	l syster	n mode	el, vari	ous con	trollers	design a	and sim	ulation	using
3	To understand the frequency domain analysis, use of frequency response methods for open loop and closed loop control systems.														
4	To analyze the stability of systems using various methods and to design compensators.														
5	To develop and analyze the state space models.														
COURS	OURSE OUTCOMES														
On the su	On the successful completion of the course, students will be able to														
CO1	Find '	Transf	èr func	tion of	syster	ns.								Unders	stand
CO2	Find	the tin	ne resp	onse o	f giver	n contro	ol syste	em moo	del and	l to desig	gn a coi	ntroller.		Create	
CO3	Find	the fre	quency	v respo	nse of	control	syster	n mode	el using	g freque	ncy res	ponse p	lots.	Analyz	ze
CO4	Analy	yze the	stabili	ity of t	he cont	trol sys	tem an	d desig	gn the	suitable	compe	nsators.		Create	
CO5	Apply	y state	space	technic	jues to	model	contro	ol syste	ms.					Evalua	te
MAPPIN	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	Μ	-	-	-	-	-	Μ	M	S	Μ	-
CO2	S	M	-	M	S	-	-	M	-	-	-	M	S	M	S
<u>CO3</u>	S	M	-	M	S	-	-	-	-	-	-	M	S	M	-
CO4	S	M	-	M	<u>S</u>	- T	M	-	- M	-	M	M	S	M	8
005	8		-	M	5	L	L	-	IVI	-	M	IVI	8	M	-
S- Strong; M-Medium; L-Low															

INTRODUCTION TO CONTROL SYSTEMS

Basic elements in control systems – classifications of control systems – Mechanical Translational and Mechanical Rotational Systems, Electrical analogy– Transfer function – Block diagram reduction techniques – Signal flow graphs.

TIME RESPONSE ANALYSIS

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control. Design and Simulation of time domain analysis using MATLAB.

FREQUENCY DOMAIN ANALYSIS

Frequency response analysis, Frequency domain specifications, Correlation between time and frequency responses, Bode Plot, Polar Plot, Constant M and N circles, Nichols chart, Design and Simulation of frequency domain analysis using MATLAB.

STABILITY ANALYSIS AND COMPENSATOR DESIGN

Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis, Introduction to Root-Locus Techniques, Guidelines for sketching root locus, Nyquist stability criterion. Cascade Lag compensation, cascade Lead compensation and cascade Lag-Lead compensation

STATE VARIABLE ANALYSIS, AND APPLICATION OF CONTROL SYSTEMS

Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, Equivalence between transfer function and state variable representations, Digital control design using state feedback. Synchros – AC servomotors- DC Servo motors.

TEXT BOOKS

K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education, New Delhi, 2003.
I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
C.J.Chesmond. "Basic Control System Technology", Viva low priced student edition, 1998.
R.C.Dorf and R.H.Bishop, "Modern Control Systems", Addison-Wesley, 1995 (MATLAB Reference).
M. Gopal, "Control Systems: Principles and Design", 3rd Edition, McGraw, Hill, 2008
Nise N.S, "Control Systems Engineering", 6th Edition, Wiley India, 2016.

REFERENCES

1. Benjamin C Kuo, "Automatic Control system", Prentice Hall of India Private Ltd., New Delhi, 2009.

2. R.C. Dorf and R.H. Bishop, "Modern Control Systems", 12th Edition, Prentice, Hall, 2010.

3. http://www.mathworks.com/access/helpdesk/help/toolbox/control/

4. Control Systems - N. K. Sinha, New Age International (P) Limited Publishers.

5. S.N.Sivanandam, S.N.Deepa, Control System Engineering using Mat Lab, 2nd Edition, Vikas Publishing, 2012.

COURS	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	e-mail id										
1	D.SARANYA	Assistant Professor	EEE / AVIT	dsaranya@avit.ac.in										
		(Gr-II)												
2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in										

\$-1.- d-=+

				POV	VERSY	STEM	IANAL		Categ	gory	L	Т	Р	Credit		
											CC	1	3	0	0	3
PREAM	To understand the necessity and to become familiar with the modeling of power system and components and to apply different methods to analyse power system for the purpose of system planning and operation.															
PRERE	QUISI	ГE: Tr	ansmis	sions a	nd Dist	tributio	ons									
COURS	EOBJI	ECTIV	ES													
1	I o model the power system under steady state operating condition.															
2	To study the power flow models and apply efficient numerical methods to solve the power flow problem															
3	To model and analyse the power systems under abnormal(or)fault conditions.															
4	To model & analyse the transient behavior of power system when it is subjected to a fault.															
5	TothestudytheImportanceofstabilityanalysisinpowersystemplanningandoperation.															
COURSEOUTCOMES																
On the successful completion of the course, students will be able to																
CO1:Describe the modeling of power system and components. Understand																
CO2:Sol	CO2:Solve an solution of Load flow problems. Apply															
CO3:Exa	amine tl	he vario	ous type	es of Sy	mmetri	cal faul	ts.								Analy	/ze
CO4:Exa	amine tl	he vario	ous type	es of Ur	nsymme	etrical fa	aults.								Analy	/ze
CO5:Exj	plain the eration.	e impoi	rtance o	of stabil	ity anal	ysis in j	power s	system j	olanning	g and					Underst	and
CO6:Cla	ssificat	ion of t	ypes of	f stabilit	y.										Unders	tand
MAPPI	NGWI	THPR	OGRA	MMEC	UTCO	MESA	NDPR	OGRA	MMES	SPECIF	ICOUT	COM	ES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO2	PSO3
CO1	S	S	L		S	L					L			S	S	M
CO2	S	S	М		S				L		S	M		S	S	М
CO3	S	S	S		S	М	М		М		S			S	S	М
CO4	S	S	S		S	М	S		S		S			S	S	М
CO5	S	S	L		S						S	S			М	
CO6	S	L	L	L	S						S	M		S	М	
S-Strong;M-Medium;L-Low																

-g-1.-d-=+

INTRODUCTION

Need for system planning and operational studies – basic components of a power system. Generator models -Transformer model- Transmission system model - load representation. Single line Diagram – per phase and per unit representation–change of base. Simple building algorithms for the formation of Y-Bus matrix and Z-Bus matrix.

POWERFLOWANALYSIS

Importance of power flow analysis in planning and operation of power systems -statement of power flow problem - classification of buses- development of power flow model in complex variables form and polar variables form- iterative solution using Gauss-Seidel method -Q-limit check for voltage controlled buses – algorithm and flow chart-iterative solution using Newton-Raphson method – algorithm and flow chart.

FAULTANALYSIS-BALANCED FAULTS

Importance of short circuit analysis - assumptions in fault analysis-analysis using Thevenin's theorem-Z-bus building algorithm- fault analysis using Z-bus - algorithm and flow chart- computations of short circuit capacity, post fault voltage and currents.

FAULT ANALYSIS–UNBALANCEDFAULTS

Introduction to symmetrical components – sequence impedances – sequence circuits of synchronous machinesequence networks – representation of single line to ground, line to line and double line to ground fault conditions. Unbalanced fault analysis - problem formulation – analysis using Z-bus impedance matrix–algorithm and flowchart.

STABILITYANALYSIS

Importance of stability analysis in power system planning and operation – classification of power system stability - angle and voltage stability- Single Machine Infinite Bus(SMIB) system: Development of swing equation - equal area criterion - determination of critical clearing angle and time –solution of swing equation by modifiedEulermethodandRunge-Kuttasecondordermethod.Algorithmandflowchart.

TEXT BOOKS

1. HadiSaadat, 'Power System Analysis', TataMcGrawHill PublishingCompany, NewDelhi, 2002.

2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, 2003.

REFERENCES

1. P.Kundur, 'PowerSystem StabilityandControl, TataMcGrawHill, Publications, 1994.

- 2. JohnJ.Grainger and W.D.Stevenson Jr., 'Power System Analysis', McGrawHillInternationalBookCompany, 1994.
- 3. I.J.Nagrath and D.P.Kothari, 'Modern Power System Analysis', TataMcGraw-HillPublishingCompany, NewDelhi, 1990.
- 4. .K.NagasarkarandM.S.SukhijaOxfordUniversityPress,2007

COURSEDESIGNERS											
S.No.	NameoftheFaculty	Designation	Department	MailID							
1	Dr.V.MANJULA	AssistantProfessor	EEE/VMKVEC	manjula@vmkvec.edu.in							
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in							

\$-1- d-=+

MICROCONTROLLER BASED SYSTEM	Category	L	Т	Р	Credit
DESIGN & EMBEDDED SYSTEM DESIGN	CC	3	0	2	4
(Theory & Practicals)					

PREAMBLE

Embedded systems course is continuous of the Microprocessor and Microcontrollers, is intended to Design, Implementation and Test of embedded applications. This includes system requirements specifications, architectural and detailed design, and implementation, focusing on real-time applications. Learning the concepts will be enforced by a Project to design and develop an embedded system based on a single-chip microcontroller and to know complete Operating Systems, RTOS

PREREQUISITE : Analog and Digital Circuits									
COUI	COURSE OBJECTIVES								
1	Explore the fundamentals of microcontroller based system design								
2	Organize the Arm Processor Embedded Firmware								
3	Acquire knowledge of I/O and RTOS role on microcontroller								
4	4 Perform various tasks in designing the Embedded System Design in RTOS								
5	5 Handle the development and debugging tools in Embedded Systems								
COUI	RSE OUTCOMES								
On the	successful completion of the course, students will be able to								
CO1.]	Explain fundamentals of microcontroller based system design	Understand							
CO2.]	Discuss the Arm Processor Embedded Firmware	Understand							
CO3.]	CO3. Illustrate the I/O and RTOS role on microcontroller Analyze								
CO4. Examine the tasks in designing the Embedded System Design in RTOS Analyze									
CO5.]	CO5. Develop and debug tools in Embedded Systems Analyze								

- p-1- - -===

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	I	-	-	-	-	S	М	-
CO2	S	S	М	-	М	-	-	-	М	-	-	М	S	М	-
CO3	S	S	M	-	М	-	-	I	М	-	-	М	S	М	-
CO4	S	S	M	-	М	-	-	-	М	-	-	М	S	М	-
CO5	S	S	M	-	М	-	-	-	М	-	-	М	S	М	-
S- Stro	S- Strong: M-Medium: L-Low														

Syllabus

REVIEW OF 8051&TYPICAL EMBEDDED SYSTEM

Introduction to Embedded System. Architecture, 8051- CPU Block diagram, MemoryOrganization, Program memory, Data Memory, Interrupts Peripherals: Timers, Serial Port,I/O Port Programming: Addressing Modes, Instruction Set, Programming Timing Analysis Casestudy with reference to 8-bit 8051 Microcontroller.

Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces & Experiments

ARM PROCESSOR ORGANIZATION&EMBEDDED FIRMWARE

ARM9 Microcontroller Architecture-Block Diagram, Features, Memory Mapping MemoryController (MC)-External Bus Interface (EBI)-External Memory Interface-Interrupt Controller-System Timer (ST- Real Time Clock (RTC) Parallel Input/output Controller (PIO)Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, RealTime Clock, Watchdog Timer, Embedded Firmware Design Approaches and DevelopmentLanguages.

RTOS BASED EMBEDDED SYSTEM DESIGN

Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multi-tasking, Task Scheduling.

TASK COMMUNICATION

Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

DEVELOPMENT & DEBUGGING TOOLS FOR MICROCONTROLLER BASED EMBEDDED SYSTEMS

Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyser & Experiments

Text Books:

- 1. Intel Hand Book on "Embedded Microcontrollers", 1st Edition
- 2. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. McKinlay, "The 8051Microcontroller and Embedded Systems using Assembly and C", 2e, PHI
- 3. ARM Company Ltd. "ARM Architecture Reference Manual– ARM DDI 0100E"
- 4. David Seal "ARM Architecture Reference Manual", 2001 Addison Wesley, England; Morgan Kaufmann Publishers
- 5.Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide -Designing and Optimizing System Software", 2006, Elsevier
- 6.Ayala, Kenneth J "8051 Microcontroller Architecture, Programming & Applications", 1st Edition, Penram International Publishing

\$-1- d-=+

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in							
2	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in							

-9-1- d-=+

		POW	ER SY	STEN	1 PRO	тест	TION A	AND				Catego	ry	L	Т	P	Cre
		SWIT	CHG	EAR								CC		3	0	0	3
PREA The co andde interru	PREAMBLE The course aims to impart fundamental knowledge on various abnormal operating conditions in power system anddescribe the apparatus and system protection schemes, phenomena of current interruption and various switchgears. Image: Control of the system Image: Control of the system Image: Control of the system																
PREF	REQU	ISITE	– Elec	trical	Machi	nes-I a	nd Ele	ectrica	l Macł	nines-II							_
COU	RSE O	BJEC	TIVE	S													
1To study about the Causesofabnormaloperatingconditions(faults,lightningand switchingsurges)of theapparatusandsystem.																	
2	2 To analyze the Characteristics and functions of relays and protection schemes.																
3	To study about the Apparatusprotection, staticand numerical relays.																
4	4 To realize the Functioning of circuit breaker.																
COURSE OUTCOMES																	
On the successful completion of the course, students will be able to																	
CO1:	findthe	ecauses	sofabno	ormalo	peratin	g cond	itionso	of theap	paratu	sand sy	stem.			A	pply		
CO2:	unders	tandan	danaly	zethe I	Electro	magne	tic and	Static	Relays.					A	naly	ze	
CO3:	recom	mendth	nesuital	ble pro	tection	schem	e for e	lectrica	al appa	ratus.				A	pply		
CO4:	studya	boutthe	estatic	and nu	merica	lrelays								U	nder	stand	
CO5:	sugges	stsuitab	oilitycii	cuitbre	eaker.									A	pply		_
MAP	PING	WITH	[PRO	GRAN	IME (OUTCO	OMES	AND	PROG	GRAMN	AE SPF	ECIFIC	OUTC	COM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO:	3
CO1	S	S	S	S	М	S	L	-	-	-	-	L	S	N	1	-	
CO2	S	S	М	S	М	S	L	L	-	-	L	L	S	N	1	-	
CO3	S	М	S	S	М	S	L	-	-	-	-	-	S	N	1	-	
CO4	S	L	L	М	М	S	L	L	-	-	L	L	S	N	1	-	
CO5	S	S	S	S	М	S	L	-	-	-	-	L	S	N	1	-	

-\$-1.-d-=+

PROTECTION SCHEMES

Principles and need for protective schemes – nature and causes of faults – types of faults–Methods of Grounding – Zones of protection and essential qualities of protection – Protection scheme.

ELECTROMAGNETIC RELAYS

Operating principles of relays – the Universal relay – Torque equation – R-X diagram – Electromagnetic Relays – Over current, Directional, Distance, Differential, Negative sequence and Under frequency relays.

APPARATUS PROTECTION

Current transformers and Potential transformers and their applications in protection schemes – Protection of transformer, generator, motor, bus bars and transmission line.

STATIC RELAYS AND NUMERICAL PROTECTION

Static relays – Phase, Amplitude Comparators – Synthesis of various relays using Static comparators – Block diagram of Numerical relays – Over current protection, transformer differential protection, distant protection of transmission lines.

CIRCUIT BREAKERS

Physics of arcing phenomenon and arc interruption – DC and AC circuit breaking – re-striking voltage and recovery voltage – rate of rise of recovery voltage – resistance switching – current chopping – interruption of capacitive current – Types of circuit breakers – air blast, air break, oil, SF6, MCBs, MCCBs and vacuum circuit breakers – comparison of different circuit breakers – Rating and selection of Circuit breakers.

TEXT BOOKS:

- 1. SunilS.Rao, 'Switchgearand Protection', KhannaPublishers, NewDelhi, 2008.
- 2. B.RabindranathandN.Chander, 'PowerSystemProtectionandSwitchgear', NewAgeInternational(P)Ltd., F irstEdition 2011.
- 3. ArunIngole, 'SwitchGear and Protection' Pearson Education, 2017.

REFERENCE BOOKS:

\$-1.- d-=+

- 1. BadriRam, B.H.Vishwakarma, 'PowerSystemProtectionandSwitchgear', NewAgeInternationalPvt LtdPublishers, SecondEdition2011.
- 2. Y.G.PaithankarandS.R.Bhide, 'Fundamentalsofpowersystemprotection', SecondEdition, Prentice Hall ofIndiaPvt.Ltd., NewDelhi, 2010.
- 3. C.L.Wadhwa, 'ElectricalPowerSystems', 6thEdition, NewAgeInternational(P)Ltd.,2010
- 4. RavindraP.Singh, 'SwitchgearandPowerSystemProtection', PHILearningPrivateLtd., NewDelhi, 2009.
- 5. VKMetha,"PrinciplesofPowerSystems"S.Chand, 2005.
- 6. BhaveshBhalja,R.P.Maheshwari,NileshG.Chotani,'ProtectionandSwitchgear'OxfordUniversityPress, 2011.

S.No ·	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in		
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathsih@vmkvec.edu.in		
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in		
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in		

- p-1- d-=+

					EHV A	AC &E	OC PO		Catego	ory L	Т	P (Credit		
					IKA	INDIVIT	55IUN	N			CC	3	0	0	3
PREAN To provi applicati	PREAMBLE To provide an in depth understanding of the different aspects of EHVAC&DC power transmission with its advantages and applications														
PREREQUISITE :NIL															
COURS	SE OB	JECT	IVES												
1	To use the different types of AC and DC links with its advantages and applications.														
2	To learn the different compensation techniques.														
3	To understand the concept of travelling waves, types of over voltage in the transmission line.														
4	To stu	udy the	differe	ent comp	oonents	used in	1 EHV s	system.							
5	To st	udy th	e vario	ous prol	olems o	occur ii	n EHV	DC sy	stem						
COURS	SE OU	TCON	AES												
On the s	success	ful cor	npletic	on of th	e cours	se, stud	lents w	ill be a	ble to						
CO1: Ex	CO1: Explain the different types of AC and DC links with its advantages and applications. Understand												and		
CO2: Define the shunt and series compensation and concept of FACT with application Remember											ıber				
CO3: Ex	CO3: Explain the concept of travelling waves on transmission line and the overvoltage in Understand											and			
<u> </u>		SIOII SYS	stem.												
CO4: D	ifferent	tiate th	e vario	ous con	trol of	EHV I	DC sys	tem.						Analy	ze
CO5: D	escribe	the co	nverte	r faults	and pr	otectio	on harn	nonics	misope	eration				Underst	and
CO6: So	olve the	e probl	ems of	EHV	DC sys	stem								Appl	у
MAPPI	NG W	ITH P	ROG	RAMN	IE OU	TCO	MES A	ND PI	ROGR	AMME	SPEC	IFIC C	UTCC	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L		S	L					L		S	S	М
CO2	S	S	М		S				L		S	М	S	S	М
CO3	S	S	S		S	М	М		М		S		S	S	М
CO4	S	S	S		S	М	S		S		S		S	S	М
CO5	S	S	L		S						S	S		M	-
CO6	S	L	L	L	S						S	М	S	М	_
S- Stron	ig; M-N	Aediun	n; L-L	ow			l	I	l						

-p-1- d-=+

GENERAL ASPECTS OF DC TRANSMISSION AND COMPARISON OF IT WITH AC TRANSMISSION

Constitution of EHV AC and DC links, Kinds of DC links, limitations and advantages of AC and DC transmission principal, application of AC and DC transmission, trends EHV AC and DC transmission, power-handling capacity converter analysis Garentz circuit, Firing control, overlapping.

COMPENSATION TECHNIQUES

Extra long distance lines, voltage profile of loaded and unloaded line along the line, compensation of lines, series and shunt compensation, shunt reactors, Tuned power lines, problem of extra compensation lines, FACT concept and application.

PROTECTION CIRCUITS OF EHV AC AND DC SYSTEM

Travelling waves on transmission system, Their shapes, attenuation and distortion, effect of junction and termination on propagation of traveling waves, over voltage in transmission system, lighting, switching and temporary over voltage: control of lighting and switching over voltage.

POWER QUALITY IN EHV AC AND DC SYSTEM

Components of EHV dc system, converter circuits, rectifier and inverter valves, Reactive power requirements, harmonic generation, adverse effects, classification, Remedial measures to suppress, ,filters, Ground return, converter faults& protection harmonics misoperation, commutation failure, Multi-terminal D,C. lines.

CONTROL OF EHV DC SYSTEM

Control of EHV DC system desired features of control ,control characteristics, constants current control, constant extinction angle control, lgnition angle control, parallel operation of HVAC & DC system, problems and advantage.

TEXTBOOK

1. Rakesh Das Begamudre, Extra High Voltage AC Transmission Engineering, New Academic Science Limited, 4th edition, March 2011.

2. K.R. Padiyar, HVDC Power Transmission System, New Academic Science Limited, Feb 2011.

REFERENCES

- 1. E.W. Kimbark. EHV-AC and HVDC Transmission Engineering & Practice, Khanna Publishers
- 2. S.Rao, EHV-AC and HVDC Transmission Engineering Practice, Khanna Publishers, 2010.

Sl No	Name of the Faculty	Designation	Department	M
1	JENSIE ANITA S	Assistant Professor	EEE/AVIT	jensiepresley@avit.ac.in
2	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in

\$-1- d-=+

			рнот	OTOVOL TAIC ENERCY CONVERSION							Categor	y L	Т	Р	Credit
			1 110 1	0101			NUIV		EINSIN		CC	3	0	0	3
PREAM First han cell asset	PREAMBLE First hand course on basics of a solar PV cell, its physics of operation, characteristics, energy conversion and PV cell assembly.														
PRERE NIL	REREQUISITE IL														
COURS	SE OBJECTIVES														
1	To Understand the concepts of Semiconductor physics related to solar PV cells														
2	To S	tudy tl	he char	acteris	tics an	d parai	neters	of a so	lar PV	cells					
3	To U	Inderst	tand va	rious t	ypes o	f conne	ections	of sola	ar cells	and arra	ay				
4	To st	udy th	ne conc	epts of	fenerg	y conv	ersion	using s	solar ce	ells and a	array				
5	To u	nderst	and the	e proce	dure ar	nd proc	ess inv	volved	in sola	r power	module a	& asse	mbly		
COURS	SE OUTCOMES														
On the s	the successful completion of the course, students will be able to														
CO 1	Explain the physical science behind the formation of a solar PV cell Understand														
CO 2	Predi	ct the	perfori	mance	of a so	lar PV	cell an	d array	Į				unde	rstand	
CO 3	Appl	y elect	trical c	ircuit c	oncept	s for P	V cells	series	& para	allel			Ap	ply	
CO 4	Appr	aise th	e energ	gy con	versior	n from	solar ra	diation	n to ele	ectricity			Unde	rstand	
C0 5	Desig	gn the	solar P	V cell	modul	e asser	nbly						Cre	eate	
MAPPI	NG WI	TH P	ROGI	RAMN	1E OU	TCON	MES A	ND PI	ROGR	AMME	SPECII	FIC O	UTCC	OMES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	L	S	-	S	М	S	-	S	S	L	М	S
CO2	S	М	L	-	S	S	L	-	S	S	-	S	S	L	S
CO3	М	L	S	-	-	-	-	S	-	-	S	-	-	M	-
CO4	S M L - - L - S - - S I										L				
CO5	-	S	M	L	-	-	L	-	-	-	-	-	S	S	L
S- Strong	g; M-M	lediun	n; L-Lo)W											

-P-1- d-=+

PROPERTIES OF SEMICONDUCTOR

Semiconductors: Crystals structures, atomic bonding, energy band diagram – direct & indirect band gap- p & n doping and carrier concentration - Hall effect in semiconductors – Intrinsic & extrinsic semiconductor - compound semiconductors – diffusion and drift of carriers, continuity equation – optical absorption – carrier recombination -Effect of temperature.

SOLAR PV CELL

PV Cell Characteristics and equivalent circuit – model of PV cell- Short circuit, open circuit and peak power parameters – data sheet study –cell efficiency – effect of temperature – temperature effect calculation –fill factor PV efficiency; optical losses; electrical losses, surface recombination velocity, quantum efficiency cell simulation

CONNECTION OF PV CELL

PV cells in series and parallel– load line – non identical cells in series and parallel – protection of PV cells in series – protection of PV cells in parallel – measuring I-V characteristics – simulation

ENERGY COLLECTION AND ATMOSPHERIC EFFECTS

Insolation and irradiance – variation of insolation with time of day – earth centric view point and declination – solar geometry –insolation on a horizontal flat plate – energy on a horizontal flat plate – sunrise and sun set hour angles. Energy on a titled flat plate – atmospheric effects – airmass – energy with atmospheric effects – clearness index

SOLAR CELL MODULE MATERIALS AND ASSEMBLY

PV modules: Module and Circuit Design - Identical and Non-identical Cells – Module Structuring and assembly - Environmental Protection - Thermal Considerations – Electrical Considerations and output conditioning - assembly materials – interconnects – crystalline and thin film modules - issues with solar PV modules, bypass diode and blocking diode – module testing and analysis.

TEXT BOOKS

- 1. Semiconductors for solar cells, H. J. Moller, Artech House Inc, MA, USA, 1993.
- 2. Fundamentals of Solar Cells: PV Solar Energy Conversion, Alan L Fahrenbruch and Richard H Bube ,Academic Press, New York , 1983
- 3. Solar Cells: Operating principles, Technology and Systems Applications, Martin Green, UNSW, Australia, 1997.

REFERENCE BOOKS

\$-1- d-=+

- 1. Solar Cells and their Applications, Larry D Partain (ed.), John Wiley and Sons, Inc, New York, 1995.
- 2. J. Nelson, The physics of solar cells, Imperial College Press, 2006.
- 3. Photovoltaic Materials, Richard H Bube, Imperial College Press, 1998
- 4. Solar Cell Array Design Handbook, H S Rauschenbach, Van NostrandReinfold, 1997.

COURS	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	e-Mail ID								
1.	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in								
2	Mr.S.Prakash	AP(Gr-II)	EEE/AVIT	sprakash@avit.ac.in								

- p-1- d-=+

SEMICONDUCTOR DEVICES AND	Category	L	Т	Р	Credit
CIRCUITS LAB	CC	0	0	4	2

PREAMBLE

The goal of this lab is to supplement the theory course Semiconductor Devices & Circuits. Students will gain experience by examining the characteristics of various semiconductor devices such as Diodes, BJTs & FETs. To improve ability of students to design the analog circuits with which services for many practical applications.

PREREQUISITE Nil

COUH	COURSE OBJECTIVES								
1	1 To understand the characteristics of a Diodes								
2	To obtain the characteristics and parameters of transistors BJT/FET.								
3	To find the frequency response of feedback amplifiers.								
4	To study the performance of waveform generator and wave shaping circuits.								
COUH	COURSE OUTCOMES								
On the	On the successful completion of the course, students will be able to								
CO1. 1	Experiment the characteristics of BJT's & FET's with various configurations	Apply							
CO2. 1	Determine ripple factor for the half wave & full wave Rectifier circuits and test with simulation tools	Apply							
CO3. 1	CO3. Determine the frequency of Feedback amplifiers and test with simulation tools Apply								
CO4. Classify the waveforms of Wave shaping circuits & Feedback amplifiers circuits and Analyze									
test wit	test with simulation tools								
CO5.E	Determine the efficiency of Power & Tuned amplifiers	Evaluate							

-9-1- d-=+

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-	-	-	-	L	М	-	-
CO2	S	Μ	М	Μ	M-	-	-	-	L	-	L	L	М	-	-
CO3	S	S	М	Μ	М	-	-	-	L	-	L	L	S	L	L
CO4	S	S	М	Μ	М	-	-	-	L	-	L	L	S	М	L
CO5	S	М	М	Μ	-	-	-	-	L	-	-	L	S	М	L
~ ~			-	-											

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

1. Plot the input and output characteristics of a BJT Configuration and to compute the h – parameters

a)Common Emitter, b) Common Base

2. Obtain the Drain characteristics and Transfer characteristics & find the Trans-conductance, Drain resistance and Amplification factor of JFET.

3. Simulation & Hardware realization of Half wave & Full wave Rectifier with, without Filter and determine the efficiency

4. Simulation & Hardware realization of Clipping & Clamping circuits for given reference Voltage levels.

5. Simulation & Hardware realization of Voltage Series Feedback amplifiers and its frequency analysis

6. Design and simulation of Power amplifiers and calculate the efficiency

7. Design and obtain frequency Response the characterization of Single Tuned amplifierCircuit.

8. Construct series voltage regulator and obtain load and line regulation characteristics

9. Construct shunt voltage regulator and obtain load and line regulation characteristics

10. Mini project.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
2	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in

\$-1.- d-=+

	ELECTRICAL MACHINES-I LAB										y	L	Т	Р	Cr	edit
										CC		0	0	4	2	
PREAM	1BLE													-		
To acqu	ire kno	wledge	e on the	e work	ing of	various	SDC m	achine	s and]	Fransfor	me	ers.				
PREREQUISITE : Nil																
COURS	SE OBJ	ECTIV	/ES													
1 To	obtain	the per	rforma	nce and	d chara	cteristi	cs of E	Electric	al mac	hines.						
2 To	gain k	nowled	lge abo	out spee	ed cont	rol tecl	hnique	s on D	C Mac	hines						
3 To	compu	ite the	efficier	ncy and	l regula	ation of	f a sing	gle-pha	se tran	sformer						
COURS	SE OUT	ГСОМ	ES													
On the s	success	ful con	npletio	n of th	e cours	se, stud	ents w	ill be a	ble to							
CO 1: S	CO 1: Study the performance characteristics of different types of DC machines. Apply Understan										erstan					
CO 2: C	Comput	e the e	fficienc	ey and	regulat	tion of	a singl	e-phas	e transi	former.	An	alyze			Und	erstan
CO 3 · T	esting	of Trai	nsform	er for N	Modell ¹	ing Ev:	aluate								Und	erstan
	esting	01 1141	15101111		viouen.		iluute								d	erstun
CO4: To	esting of	of a DC	Mach	ine and	to mo	nitor t	he effic	ciency.	Evalua	ate					Ana	lvse
CO 5: E	Explain	the Tra	ansforn	ner cor	nnectio	ns									Ana	lyse
MAPPI	NG WI	TH PR	ROGR/	AMME	OUT	COME	S AND	PRO	GRAM	ME SPE	EC	IFIC OUT	COMES			
COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P	PO12	PSO	l Po	OS2	POS3
	1										C)				
											1					
											1					
CO1	S	L	М	-	-	-	-	-	S	L	L	L	S	Μ	[-
CO2	S	L	M	-		L	L	-	S	L	L	M	S	M	[-
CO3	S	L	M	-	-	L	L	-	S	L	L	M	S	M	[L
CO4	S	L	M	L	L	L	L	-	S	L	L	L	S	M	[L
CO5			M	-	-	-	-		S	L	L	L	S	M		-
S-STRC	ONG.M	-MED	IUM,L	-LOW		I I C				Tra						
						LIS	T OF E	EXPER	IMEN	TS						
1. Load	test on	DC sn	iunt mo	otor.												
2. Load $3.$ Speed	lest on	DC se	C shun	t moto	r											
1 Open	circuit	and lo	e shun	racteri	r. stice of	DC of	nerato	r (Self	and Se	naratelu	Ē	voited)				
5 Load	test on	de cor	nnound	l gener	ator	DCg	nerato		and Sc	paratery	Ľ.	xencu).				
6 Load	test on	single	nhase	transfe	rmer											
7. Open	circuit	& Sho	ort circi	uit test	on sing	ole nha	se tran	sforme	er.							
8. Swin	burne's	test.				Sie pile										
9. Separ	ration o	of Loss	es in si	ngle pł	ase tra	nsforn	ner.									
10. Hop	kinson	's test.		8 1												
11. Sum	npner's	test on	1-pha	se tran	sforme	r.										
12. Stud	12. Study of three phase transformer connections.															
13. Study of DC Starters.																
Reference Books																
Laborat	Laboratory Reference Manual															
									1							

-9-1- d-=+

SNO	NAME OF THE FACULTY	DESIGNATION	D	Mail.id
			E	
			P	
			A	
			R	
			T	
			N	1
			E	
			N	
			Т	
1	A.BALAMURUGAN	ASSOCIATE – PROFESOR	V	balamurugan@vmkvec.edu.in
			N	1
			K	
			V	
			E	
			C	
2				

-g-1.-d-=+
ELECTRICAL MACHINES – II LAB Category L T H	C	Credit											
CC 0 0 4		2											
PREAMBLE													
The course provides basic knowledge about the AC machines and to provide opportunity to	identi	ify and											
analyze the various performance factors in different load and no-load conditions													
COURSE OBJECTIVES													
1 To determine the voltage regulation of an alternator from test data and analyze the effect of various factors such as armature resistance, armature reactance, leakage reactance and power factor on regulation. 2 The factor of th													
2 To formulate of two reaction model of salient pole synchronous machines from test data and predetermine the													
voltage regulation using quadrature axis and direct axis reactance.													
3 To determine the performance of single phase and three phase induction motor from test data and analyze the effect of speed, power factor, line current and efficiency under different loading conditions													
of speed, power factor, line current and efficiency under different loading conditions.													
4 To employ the different starting and speed control methods of three phase induction motor.													
5 To study about construction and principle operation of Linear and Synchronous induction motor.													
COURSE OUTCOMES													
On the successful completion of the course, students will be able to													
CO1:Predetermine the regulation of Alternator.	Ren	nembe											
	r												
CO2: Analyze the Performance and plot the characteristics of Alternator at different load conditions.	Ana	lyze											
CO3. Determine the effect of excitation on armature current and power factor of synchronous motor	Und	lersta											
Cost Determine the effect of excitation on annature current and power factor of synemonous motor.	nd												
CO4: Evaluate the performance of three phase induction motor through the load characteristics and circle	Evo	luoto											
diagram.	Lva	iuaic											
CO5: Apply the suitable speed control method for any specifical applications.	App	oly											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES													
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 P	502	PSO 3											
CO1 S S M L - L	L	-											
CO2 S M L - L M - - - M - L	М	-											
CO3 S M L S L M - - M - L M													
CO4 S L M S L M - - - L - L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	М	-											
CO5 S M S L	М	-											
S- Strong; M-Medium; L-Low		I											

-g-1.-d-=+

SYLLA	BUS												
SU	No	LIST	OF EXPERIMEN	TS									
	1	Regulation of 3-pha	ase Alternator by EN	MF and MMF methods.									
	2 Regulation of 3-phase Alternator by ZPF and ASA method.												
	3 Slip test on 3-phase Alternator.												
	4	Load characteristic	s of 3-phase Alterna	ator by bus bar loading									
	4	5 V and invert	ed V curve of Sync	hronous motors.									
		6 Load te	est on 3-phase Induc	ction motor									
		7 Load te	st on 1-phase Induc	tion motor.									
	8	No load and Blocke	d Rotor test on three	phase induction motor.									
	Equivalent circuit	and pre – determinatio	n of performance ch	aracteristics of single-phase Induction									
9) motor.	-	-										
	10	Separation of	losses in three-phase	e induction motor.									
	-	1	1										
		11 Speed cont	rol of three phase if	iduction motor									
	12 Study of Servo	motor, PMDC & PMA	AC motor, Linear inc motor.	luction motor and Synchronous Induction									
COURS	SE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Dr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in									
2.	Mr.R.Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in									
3.	Mr.S.Prakash	Assistant Professor	EEE/AVIT	sprakash@avit.ac.in									

(Gr-II)

-g-1.- d-=+

				CO	NTRO	LSYS	TEMS	SLAB			Catego	ry L	Т	P	Credit
				001				,			CC	0	0	4	2
PREAM oscillosc and bea advanced	PREAMBLE Control Systems simulation Lab consists of multiple workstations, each equipped with an oscilloscope, digital multi-meter, PID trainers, control system trainers and stand alone inverted-pendulum, ball and beam control, magnetic-levitation trainers. This lab also covers the industrial implementation of advanced control systems via different computer tools such as MATLAB and Simulink.														
PRERE	PREREQUISITE														
COURS	NIL COURSE OBJECTIVES														
1	Image: Tour of the system representation of the system representation of the system dynamic response														
2	2 To assess the system performance using time domain analysis and methods for improving it														
3	To assess the system performance using frequency domain analysis and techniques for improving the performance														
4	To de	esign v	various	contro	llers a	nd com	pensat	tors to	improv	e syster	n perfor	mance			
COURS	E OUT	ГСОМ	IES												
On the su	uccessf	ùl con	npletion	n of the	e cours	e, stud	ents w	ill be al	ble to						
CO1	How a con	to imp npensa	prove th tor for	ne syste a spec	em per ific app	formar olicatic	nce by a	selectir	ng a su	itable co	ontroller	and/or	Un	derstand	1
CO2	Apply system	y vario m perf	ous tim òrman	e doma ce	in and	freque	ency do	omain t	echniq	ues to a	ssess the	;	Ap	ply	
CO3	Apply system	y vario ms, ele	ous con ectrical	trol str drives	ategies etc)	s to dif	ferent a	applica	tions(e	xample	: Power		Ana	alyze	
CO4	Test s and a	system pplica	tions o	ollabili f state	ty and space r	observ. eprese	ability ntation	using s to var	state sp ious sy	ace repr stems	resentati	on	Ana Cre	alyze ar ate	ıd
MAPPI	NG WI	TH P	ROGF	RAMM	E OU	TCON	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	М	S	-	-	_	М	L	-	L	S	М	S
CO2	S	S	L	М	S	-	-	L	М	L	М	-	S	Μ	-
CO3	S	S	S	М	S	-	L	-	М	L	-	М	S	М	S
CO4	S	S S - M S L M L - M S M M													
S- Strong	g; M-M	ledium	n; L-Lo	W											

LIST OF EXPERIMENTS

- 1. Transfer function of self and separately excited DC Generator.
- 2. Transfer function of Armature and Field controlled DC Motor.
- 3. Transfer function of AC Servomotor.

- 4. Frequency response of Lag, Lead & Lag Lead networks.
- 5. Characteristics of Synchronous transmitter and Receiver.
- 6. Transfer function of Ward Leonard method of speed control of DC motor.
- 7. Study of P, PI and PID Controllers (First Order).
- 8. Simulate DC Position Control system and obtain its step response
- 9. Analog and simulation of type -0 and type -1 systems
- 10. Stability analysis of Linear Systems
- 11. Simulation of first order systems using MATLAB/ SCILAB
- 12. Simulation of second order systems using MATLAB/ SCILAB

COURS				
S.No.	Name of the Faculty	Designation Department		e-mail id
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
2.	D.SARANYA	Assistant Professor GR-II	EEE / AVIT	dsaranya@avit.ac.in

- p-1- d-=+

POWER SYSTEM SIMULATION LAB	Category			P	Credit								
	CC	0	0	4	2								
To acquire software development skills and experience in the usage of standa	ard packa	ges i	necessa	ry for a	nalysis								
and simulation of power system required for its planning, operation and contra	and simulation of power system required for its planning, operation and control.												
PREREQUISITE:NIL													
COURSEOBJECTIVES													
1 To study the power system planning and operational studies.													
To study the Formation of bus admittance and impedance matrices and network solutions.													
To study the Power flow solution of small systems using simple method, Gauss-Seidel P.F. method.													
4 To study the Economic Dispatch and State estimation.													
5 To acquire experience in the usage of standard packages for the following analysis/simulation/control													
functions													
COURSEOUTCOMES													
On the successful completion of the course, students will be able to													
CO1:Explainthepowersystemplanningandoperationalstudies													
	1												
CO2:Explaintheprocedure of bus admittance and impedance matrices and network so	olutions.		1	Inderst	and								
				Anal	w70								
CO3:Solve the Power flow problems using GS and NR method.				Anal									
CO4:Detect Symmetrical and Unsymmetrical fault.				Ana									
CO5:Describe the Economic dispatch and State estimation.				Under	stand								
CO6:DesigntheElectromagnetictransientcircuits.				Cre	ate								
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES													
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO	D11 PO	12	PSO1	PSO2	PSO3								
CO1 S S			S	S	M								
CO2 S S S - S - - M M -	- -		S	S	M								
CO3 S S S	-		S	S	M								
CO4 - S S M M -	-		S	S	M								
CO5 S S S - - - - - S S	5 -		S	S	M								
CO6 S - S -	- -		S	S	M								
S-Strong;M-Medium;L-Low	•												

-\$-1.-d-=+

LISTOFEXPERIMENTS

- 1. Computation of Parameters and Modeling of Transmission Lines.
- 2. Formation of Network Matrices and Solution of Networks.
- 3. Power Flow Analysis Using Gauss-Seidel Method.
- 4. Power Flow Analysis Using Newton-Raphson Method.
- 5. Symmetric and unsymmetrical fault analysis.
- 6. Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System.
- 7. Load-Frequency Dynamics of Single and Two-Area Power Systems.
- 8. State estimation: Weighted least square estimation.
- 9. Economic Dispatch in Power Systems.
- 10. Electromagnetic Transients in Power Systems.

REFERENCEBOOKS

1. Laboratoryreferencemanual.

No.	NameoftheFaculty	Designation	Department	MailID
1	DR.V.MANJULA	AssistantProfessor	EEE/VMKVEC	manjula@vmkvec.edu.ir
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in
	·			

- p-1- d-=+

	Category	L	Т	P	Credit
HIGH VOLTAGE ENGINEERING	EC –PS	3	0	0	3

PREAMBLE

The course provides to get a fair knowledge about the generation of high voltages and currents. An understanding of high voltage phenomena, and to present the basics of high voltage insulation design and techniques. The course comprehends the concept of solid, liquid and gaseous dielectrics. The itineraries produce the method on generation and measurement of high voltages and currents. It gains knowledge in testing of high voltage equipments and the basics of high voltage laboratory techniques.

PREREQUISITE NIL

COURSE OBJECTIVES										
1	To understanding of high voltage technology and its applications, Insulation design in general and protection of OH lines									
2	To Understand breakdown mechanisms in solids, liquids and gases									
3	Analyze transient over voltages and design protection .									
4	To analyze the stability of closed and open loop systems using various methods and to design compensators,									
5	To Apply diagnostic tests to examine the quality of insulation and apply statistic approach to analyze testing data									
COURS	E OUTCOMES									
On the su	accessful completion of the course, students will be able to									
CO1	Identify the causes and effects of over voltages and protection of power system against over voltages.	Understand								
CO2	Classify the different breakdown mechanisms in Gases, liquids and solids.	Analyze								
CO3	Describe the principle of generation of high DC, AC and impulse voltages.	Understand								
CO4	Explain the various measurement techniques of high voltages and high currents.	Analyze								
CO5	Scrutinize the Measurement of High AC , DC and Impulse Voltages and Currents	Analyze								
CO6	Testing of high voltage electrical power apparatus	Apply								

- p-1- d-=+

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	М		S	S		L	L	М	L	М	S	S
CO2	М	S	М	М	L		М	L			S	М	S	L	L
CO3	L	L	S			L			М				М	L	
CO4	L							М		L	L	М			
CO5	S		М		L			М			М	М			М
CO6	S	L	L	L	S	L	L	S	М	М	S	S	S	S	М

S- Strong; M-Medium; L-Low

SYLLABUS

OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION COORDINATION

High Voltage classification - Causes of over voltages and its effects on power system – Lightning, switching surges and temporary over voltages – protection against over voltages - Principles of insulation co-ordination.

ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUIDS

Gaseous breakdown in uniform and non-uniform fields – Corona discharges – Vacuum breakdown – Conduction and breakdown in pure and commercial liquids – Breakdown mechanisms in solid and composite dielectrics.

GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS

Generation of High DC, AC, impulse voltages and currents – Tripping and control of impulse generators.

MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS

Measurement of High voltages and High currents – Digital techniques in high voltage measurement.

HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS

Testing of Insulator - Bushings - Isolators, Circuit breakers - Cables - Transformers -Surge Arresters - Tan Delta measurement - Partial Discharge measurement - Radio interference measurement - Case Studies.

TEXT BOOKS

1. M. S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, 1995.

2. Kuffel, E and Zaengl, W.S, 'High Voltage Engineering Fundamentals', Pergamon Press, Oxford , Londan, 1986

3. High voltage engineering, Farouk A M Rizk; Giao N Trinh, CRC Press, [2014] ©20 ©2014

REFERENCES

1. E. Kuffel, W. S. Zaengl and J.Kuffel, "High Voltage Engineering Fundamentals", 2nd Edition,

\$-1.- d-=+

Butterworth – Heinmann Publisher, 2000.

- 2. L. L. Alston, 'High Voltage Technology', 1st Edition, Oxford University Press, 1968.
- 3. T.J.Gallagher and A.J Pearmain, "High Voltage Measurement, Testing and Design", 2nd Edition, Wiley, New York, 2007.
- 4. C.L Wadwa, "High Voltage Engineering", 3rd Edition, New Age International, New Delhi, 2012.
- 5. R.D. Begamudre, "High Voltage Engineering (Problems and Solution)", 1st Edition, New Age International, New Delhi, 2010.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in
2	R. SATHISH	Assistant Professor	EEE / VMKVEC	sathish@vmkvec.edu.in

- p-1- d-=+

		I	POWE	RSYST	EMOF	PERAT	IONA	NDCO	NTROL	_ Ca	tegory	L	Т	Р	Credit
											EC –PS	3	0	0	3
PREAM	BLE	C		•.4 .4			1		•	1	. 1				. 1
	l o beco	me fan	niliar w	ith the	prepara	atory w	ork nec	essary 1	form me	eting the	e next da	iy´s pov	er syste	em opera	tion and
		ous cor	itrol act	lions to	be imp	iemente	a on th	e syster	n to me	et the m	inute-to-	minute	variatio	n of syst	em load.
IKEKE															
	COURSEOBJECTIVES 1 Have an overview of system load variation, reserve requirements, operation and control of nower system														
1	Have an overview of system load variation, reserve requirements, operation and control of power system.														
2	Give an insight into the role of speed governing mechanism in load frequency control, concept of control area,														
	modeling and analysis of load frequency control loop.														
3	3 Give knowledge of excitation systems and the methods of voltage control.														
4	4 Study the economic dispatch of generated power.														
5	Provide adequate knowledge of the functions of energy control center, SCADA system and the security control.														
COURSEOUTCOMES															
On the successful completion of the course, students will be able to															
CO1:Det	CO1:Define the load curves and load duration curve. Understand														
CO2:Ap	CO2:Apply real power control, reactive power control to different cases Apply														
CO3:Exp	plain the	e techn	iques to	o contro	l power	r flows,	freque	ncy and	l voltage	2.				Under	stand
CO4:Sol Convent	ve Econ ional an	nomic o Id mod	dispatel ern me	n, Unit o thods.	commit	ment pi	roblems	s at diffe	erent loa	ıds using	5			App	oly
CO5:Det	fine con	nputer	control	of pow	er svste	em								Under	stand
CO6:Des	sign the	contro	llers to	mainta	in powe	er syste	m relial	bility						Crea	ate
MAPPI	NGWI	THPRO	OGRA	MMEC	UTCO	MESA	NDPR	OGRA	MMES	PECIF		COME	S		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S			S								S	M	M
CO2		S	S										S	S	М
CO3				M	M						-		S	M	М
CO4	S	S	S	-	S								S	S	М
CO5					S					S				S	S
CO6				М	М								S		
S-Strong	;M-Me	dium;L	-Low	1	1	1	1	1	1	1	1	1			

-9-1- d-=+

INTRODUCTION

System load – variation - load characteristics - load curves and load-duration curve (daily, weekly and annual) - load factor -

diversity factor. Importance of load forecasting and simplete chniques of forecasting. An overview of power system operation nand control and the role of computers in the implementation. (Qualitative treatment with block diagram).

REALPOWER-FREQUENCYCONTROL

Basics of speed governing mechanism and modeling - speed-load characteristics – load sharing between two synchronous machines in parallel. Control area concept LFC control of a single-area system. Static and dynamic analysis of uncontrolled and controlled cases. Integration of economic dispatch control with LFC. Two-area system – modeling – static analysis of uncontrolled case - tie line with frequency bias control of two-area system-state variable model.

REACTIVEPOWER-VOLTAGECONTROL

Basics of reactive power control. Excitation systems – modeling. Static and dynamic analysis - stability compensation - generation and absorption of reactive power. Relation between voltage, power and reactive power at a node - method of voltage control – tap changing transformer. System level control using generator voltage magnitude setting, tap setting of OLTC transformer and MVAR injection of switched capacitors to maintain acceptable voltage profile and to minimize transmission loss.

COMMITMENTANDECONOMICDISPATCH

Statement of economic dispatch problem – cost of generation – incremental cost curve - co-ordination equations without loss and with loss, solution by direct method and λ - iteration method. (No derivation of loss coefficients).Statement of Unit Commitment problem –constraints; spinning reserve, thermal unit constraints, hydro constraints, fuel constraints and other constraints. Solution methods -Priority-list methods –forward dynamic programming approach. Numerical problems only in priority-list method using full-load average production cost.

COMPUTERCONTROLOFPOWERSYSTEMS

Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions – system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions. Network topology – state estimation - security analysis and control. Various operating states (Normal, alert, emergency, in-extremis and restorative). State transition diagram showing various state transitions and control strategies.

TEXT BOOKS

 Allen.J.WoodandBruce F.Wollenberg, 'PowerGeneration,OperationandControl',JohnWiley& Sons,Inc., 2003.
 Chakrabarti&Halder, "PowerSystemAnalysis:OperationandControl",Pr enticeHallofIndia,2004Edition.

REFERENCEBOOKS

1. D.P.KothariandI.J.Nagrath, 'ModernPowerSystemAnalysis', ThirdEditi on, TataMcGrawHillPublishingCompanyLimited, NewDelhi, 2003. (For Chapters 1, 2&3)

2. L.L. Grigsby, 'TheElectric PowerEngineering, HandBook', CRCPress& IEEE Press, 2001.

3. HadiSaadat, "PowerSystemAnalysis", (Forthe chapters 1, 2, 3 and 4) 11 th Reprint 2007.

4. P.Kundur, 'Power SystemStabilityandControl' MCCrawHillPublisher, USA, 1994.

5. Olle.I.Elgerd, 'ElectricEnergySystemstheoryanintroduction' TataMcGrawHillPublishingCompanyLtd.New Delhi,SecondEdition2003.

0001				
S.No.	Name of the Faculty	Designation	Department	
				Mail ID
1	Dr.V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in

\$-1- d-==

POWER QUALITY AND FACTS	EC- PS		1 0	P 0	Credit
	EC- P3	5	U	U	3

PREAMBLE

This course imparts knowledge about various electrical power quality issues and emphasis the need for PQ monitoring and measurement. To develop the knowledge in the area of FACTS controller using different techniques.

PRERE	PREREQUISITE: Nil														
COURS	EOBJI	ECTIV	ES												
1	Desc	ribe th	e vario	ous pov	ver qua	lity iss	ues.								
2	Ident	ify the	root c	ause of	f power	r qualit	y prob	lems.							
3	Inter	pret the	e need	for PQ	monit	oring a	and mea	asurem	ent.						
4	To St	udy ab	out wor	king pr	inciple,	Differe	ent mod	les of o	peratior	and app	olication	soft thyr	ristors c	ontrolled	l series
	capac	itor.													
5	5 To Study the different voltage source converters based FACTS controllers.														
COURSEOUTCOMES															
On the su	ıccessfi	ıl comp	oletion	of the c	ourse, s	tudents	will be	e able to)						
CO1: Explain the various power quality problems. Understand															
CO2: Di	CO2: Discuss the root cause of power quality problems.Understand														
CO3: Di	CO3: Discuss the need for PQ monitoring and measurement. Understand														
CO4: De	sign an	d mode	ling of	various	s FACT	S Cont	rollers							Creat	ie –
CO5: Pre	edict the	e impac	t of FA	CTS co	ontrolle	rs on A	C trans	mission	system	l .				Analy	ze
MAPPIN	NGWI	THPRO	OGRA	MMEC	OUTCO	MESA	NDPR	OGRA	MMES	SPECIFI	COUT	COMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L									L				
CO2	M	L												L	
CO3	M	L			L					М	М	L		S	L
CO4	S	М	S										S	S	М
CO5	M			S		М								М	
S-Strong	S-Strong;M-Medium;L-Low														

- p-1- d-==

Introduction

Power quality-Impact of PQ on end users, Need for PQ monitoring, Various PQ Problems

Voltage disturbances

Voltagedips, overvoltages, shorts upply interruptions, voltage fluctuations and flicker-sources, effects, measurement and mitigation

Transients

Transientsystemmodel,examplesoftransientmodelsandtheirresponse,powersystemtransientmodel,typesandcauses of transients, lightning, other switching transients.

Voltage and Current Unbalance

Symmetrical components of currents and voltages, sources, effects, measurements and mitigation

Solving power quality problems using CPD

Power quality measuring equipment-Smartpowerqualityanalyzers,Introductiontocustompowerdevices(CPD)–STATCOM,DVR,UPQC.

THYRISTOR CONTROLLED SERIES CAPACITOR(TCSC)ANDAPPLICATIONS

Operation of the TCSC – Different modes of operation – Modeling of TCSC – Variable reactance model – Modeling for Power Flow and stability studies. Applications: Improvement of the system stability limit–Enhancement of system damping-SSR Mitigation.

VOL TAGESOURCECONVERTERBASEDFACTS CONTROLLERS

Static Synchronous Compensator (STATCOM) – Principle of operation – V-I Characteristics. Applications: Steady state power transfer-Enhancement of transient stability – Prevention of voltage instability. SSSC-operation of SSSC and the control of power flow –ModelingofSSSCinloadflowandtransientstabilitystudies.Applications:SSRMitigation-UPFCand IPFC.

TEXT BOOKS

- 1. SankaranC,"PowerQuality", CRCPress specialIndianedition2009.
- 2.K.R.Padiyar,"FACTSControllersinPowerTransmissionandDistribution",NewAgeInternational(P) Limited, Publishers, New Delhi, January2016.
- 3.R.MohanMathur,Rajiv K. Varma," Thyristor– Based Facts Controllers for ElectricalTransmissionSystems",IEEEpressandJohnWiley&Sons,January2011.

REFERENCE BOOKS

- 1. Roger.C.Dugan,MarkF.Mcgranaghan &H.WayneBeaty," Electrical power system Quality" McGraw-HillNewyorkSecondedition2003.
- 2. Math H.J.Bollen, « Understanding Power Quality Problems : Voltage Sags and Interruptions », IEEE Press, NewYork, 2000.
- 3.EwaldFuchs MohammadMasoum, "PowerQualityinPowerSystemsandElectricalMachines" 2ndEdition, AcademicPress, ISBN: 9780128007822, 2015.
- 4. NarainG.Hingorani, "UnderstandingFACTS-
- Concepts and Technology of Flexible ACT ransmission Systems", Standard Publishers Distributors, New Delhi, March 2011.

-P-1- d-=+

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in								
2	S.PRAKASH	Assistant Professor(Gr-II)	EEE/AVIT	sprakash@avit.ac.in								

-\$-1.-d-=+

SPECIAL ELECTRICAL MACHINES

PREAMBLE:

This courseaims to impart in students, a good understanding of fundamental p ofdifferent types of special machines. Thecourse includes constructional details, operating p motorcharacteristics,microprocessorbasedcontrollers and applications of various types of special machines.

PREREQUISITE:Nil

COURSEOBJECTIVES

1 Tounderstandtheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof 2 Tostudytheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof 3 Tounderstandtheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof 3 Tounderstandtheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof 3 Switchedreluctancemotors.
Synchronousreluctancemotors. 2 Tostudytheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof 3 Tounderstandtheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof Switchedreluctancemotors. Switchedreluctancemotors.
2 Tostudytheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof 3 Tounderstandtheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof Switchedreluctancemotors. Switchedreluctancemotors.
Steppermotors. 3 Tounderstandtheconstruction, principleof operation, torque equation, driver circuits&applications of Switched reluctancemotors.
3 Tounderstandtheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof Switchedreluctancemotors.
Switchedreluctancemotors.
4 Tostudytheconstruction,principleofoperation,torqueequation,drivercircuits&applicationsof
Permanentmagnetsynchronousmotors.
5 Tounderstandtheconstruction, principle of operation, torque equation, driver circuits & applications of
PermanentmagnetbrushlessDCmotors.
COURSEOUTCOMES
On the successfulcompletionofthecourse, students will be able to
CO1:InterpretthebasicconstructionandoperatingprincipleofSynchronousReluctanceMotor,
SRM,Steppermotor,PMSM andPMBLDCMotor
CO2:Predict
themotorcharacteristics, power input and torque development in Synchronous Reluctance Un
Motor,SRM,Steppermotor,PMSM andPMBLDCMotor.
CO3:Illustrate
thedrivesystemsandcontrolschemesforSteppermotors,SRM,PMSMandPMBLDCMotor.
CO4:Determine the suitable special purpose motor for the specific application
CO5:ExaminetheMicroprocessorbasedcontrolofSteppermotors,SRM,PMSMandPMBLDCMotor.
CO6: Summarize permanent magnet materials and magnetic characteristics.
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO1	М	L	-	-	-	-	-	-	-	-	М	-	-	-
CO2	М	L	-	L	-	-	-	-	-	-	М	-	-	L
CO3	S	M	М	M	М	-	L	-	М	L	S	-	-	S
CO4	S	М	М	L	-	-	-	-	-	-	М	L	-	M
CO5	М	L	-	M	S	-	L	-	М	-	S	L	-	S
C06	S	-	М	L	-	-	L	-	-	-	М	L	М	-
0 04		1. 1.	тт											

S-Strong;M-Medium;L-Low

\$-1.- d-=+

SynchronousReluctanceMotors

Constructional features - Operating principles - Types - Axial and Radial flux motors - Reluctance torque-Torque equation-characteristics-Syncreldrivesystem-Phasordiagram-Applications.

Steppermotors

Constructional features - Principle of operation - Torque production in Variable Reluctance (VR) stepper motor -Hybrid motor - Multi stack configuration - Modes of excitations - Characteristics - Drive circuits - Closed loopcontrol-Microprocessorcontrolofsteppingmotors-Applications.

SwitchedReluctanceMotors

Constructional features - Principle of operation - Rotary andLinear SRMs - Torque equation- Modes of operation-Powerconverter circuits-Closedloopcontrol of SRM drive-Microprocessor control of SRM drive - Sensorless control of SRM drive-Characteristics-Applications.

PermanentMagnetBrushless DCMotors

Permanent magnet materials - Magnetic characteristics - Comparison between PMBLDC motor and Conventional DC motor - Constructionalfeatures-Principleofoperation– Classifications– Rotor position sensors - EMFandtorqueequations- - Controller for PMBLDC motor - - Mechanical and Electronic commutators - - Torque-speedcharacteristics-Magneticcircuitanalysis-SensorlesscontrolofBLDC motors-Applications.

PermanentMagnetSynchronous Motors

Evolution of Synchronous Motor - Constructional features- Principleof operation- EMF and Torque equations-Armature reaction EMF-Sinewave motor with practical windings-Phasor diagram-Torque/speed characteristics -Power controllers - Comparison of Permanent magnet excitation and Electromagnetic excitation -Microprocessor based control of PMSM - Applications.

TEXTBOOKS:

1. BimalK.Bose, "ModernPowerElectronics andACDrives", PrenticeHall, NewDelhi, 2005.

2. Gopal K.Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House Pvt.Ltd., New Delhi, Secondedition, 2015.

REFERENCEBOOKS:

- 1. R.Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, Prentice Hallof India, 2009.
- 2. T.J.E.Miller,"BrushlessPermanentMagnetandReluctanceDCMotorDrives", ClarendonOxfordPress, 1989.
- 3. T.Kenjo, "SteppingMotorsandtheirMicroprocessorControls", ClarendonOxfordPress, 1994.
- 4. K.Venkataratnam, "SpecialElectricalMachines", UniversityPress(India)Pvt.Ltd., 2009.
- 5. E. G. Janardanan, "Special Electrical Machines", PHI Learning Private Limited, ISBN: 978-81-203-4880-6,Delhi,2014.

COUR	RSEDESIGNERS			
S.No.	NameoftheFaculty	Designation	Department	MailID
1	Dr. D. Sankarganash	AggaziataDrafaggar	EEE/VMRVEC	contrargenech avmitziege edu in
1	DI. R.Sankarganesh	Associaterioiessoi	EEE/ VIVIN VEC	sankarganesn@vinkvec.edu.in
2	Dr.K.Boopathy	Professor	EEE/AVIT	boopathyk@avit.ac.in

P-1- d-=+

		WIND ENERGY CONVERSION CATEGORY L T P C													
		SYS	ГEMS						EC-P	S	3	0	0	3	
PREA	MBL	Ē													
To un	dersta	nd and	familia	arize th	e princi	ple ,co	ncepts	s of wir	nd energ	gy con	versio	n syste	ms.		
PRER	EQUI	JISITE	:Nil												
COUH	RSE O	BJECT	IVE												
1.		To und	erstand	d the c	ompone	nts, va	rious t	theories	and dy	namio	es of w	vind ene	ergy cc	onversion	
		system	S		-				-						
2.		To stuc	ly the v	various	s types o	f wind	turbi	nes.							
3.		To stuc	ly aboı	it the f	ixed spe	ed sys	tems i	n wind	energy	conve	ention				
4. To study about the variable speed systems in wind energy convention															
5. To introduction the grid connected control and monitoring sytems.															
COU	RSE O	UTCO	MES		0										
On tl	he suc	cessful	compl	etion c	of the co	urse, st	tudent	s will b	e able t	to				Underst	and
CO1:	Realiz	e the b	asics o	fwind	energy	conver	sion s	vstems						Underst	and
$\frac{001}{002}$	Compr	ehend y	various	types	of wind	turbin	es in	energy	conver	sion s	reteme			Analysi	
$\frac{CO2.0}{CO2.0}$	2011pi	tond the		tiona	of wind		$\frac{1}{2}$	antrian			vad t	For five	4	Analysis	,
cost		tand the	e opera	mons (or variou	is type	s of el	lectrica	I macm	neries	used	or fixed	u	Analysis	5
speed CO4J	Syster.	115.			-14	.1	<u> </u>		1.1	. 1	4			A	
CO4:1	<u>liustra</u>	ite the g	general			al pow	$\frac{1}{1}$	n varia	$\frac{1}{1}$ ible spe	ed sys	stem.	· 1		Analysis	3
COS: Acquire knowledge on grid connected wind farm and design a standalone wind Create															
energy	$\frac{y \text{ conv}}{x}$	ersion :	system						• ,						
Mapp	ning with programme outcomes and programme specific outcomes														
COS	POI	PO2	P03	P04	P05	PO6	PO 7	PO8	P09			PO12	PS01	PS02	PS03
CO1	S	M	_	-	M	S	S	M	_	-	L	-	M	-	M
CO2	S	S	_	-	M	S	S	M	_	-	L	†_	L	-	L
CO3	S	S	L	-	S	S	S	M	-	-	M	-	M	L	L
CO4	S	M	L	М	S	S	М	M	-	-	М	-	M	-	-
CO5	S	M	L	М	S	S	М	L	L	-	М	-	M	-	M
S-STF	RONG	,M-MI	EDIUN	,L-LO	ÓW			1				1			
SYLL	ABUS	<u>Š</u>		,											
INTR	ODU	CTION	I										9		
Comp	onents	s of WE	ECS-W	ECS s	chemes-	Power	• obtai	ned fro	m wind	l-simp	le moi	nentur	1 theor	y-Power	
coeffi	cient-S	Sabinin	's theo	ry-Aeı	odynam	ics of	Wind	turbine	;	1			•		
WIN	D TU	RBINE	S										9		
HAW	T-VA	WT-Po	wer de	velope	ed-Thrus	st-Effic	iency	-Rotor	selectio	n-Rot	or des	ign con	siderat	tions-Tip	speed
ratio-1	No. of	Blades	-Blade	profil	e-Power	Regul	ation-	yaw co	ntrol-P	itch ar	igle co	ontrol-s	tall cor	ntrol-Sch	emes
for ma	aximuı	m powe	er extra	action.											
FIXE	ED SP	EED S	YSTE	MS			_						9		
Gener	ating S	System	s- Con	stant s	peed cor	istant f	reque	ncy sys	stems -(Choice	e of Ge	enerator	s-Deci	iding fact	ors-
Synch	ronou	s Gener	rator-S	quirre	Cage Ii	iductic	on Ger	nerator-	· Model	of W	ind Sp	eed- M	odel w	vind turbi	ne
rotor -	- Drive	e Train	model	-Genei	ator mo	del for	Stead	ly state	and Tra	ansien	t stabi	lity ana	lysis.		
VAR		E SPE	ED SY	STEN	/15	• 1	1	1 ·	• ,• •	(7 · 1	1	1	9		
Need	of var	able sp	eed sy	stems-	Power-W	vind sp	beed c	naracte	ristics-	variat	ole spe	ed cons	stant fr	equency	
systen	ns syn	chrono	us gene	erator-	DFIG-	PMSG	-varı	able sp	eed ger	erator	's mod	eiing -	v ariab	ne speed	
variab	ne frec	luency	scnem	es.					otta #4	r			A		
GKI				UNTR	UL & N	IUNII OTO -		G SY	SIEMS)	1		У Т) —		
wind	tions	onnecti	on req		THIS, FA	-1500	murol from	& IOW-	voltage		ntro1	II (LVK	nracti	iip rate	ductor
tranda	wind	interee	nnecti	anuning		LUS 101	nequ			ige 00	nuol, (f the m	practic wer ci	ustem inc	Judina
uenus	wind	merco	meetic	эн шир	al						ance 0	n me po	JWCI SY	уысні ше	Juang

modeling issue- WECS in various

- p-1- d-=+-

Total Hours = 45

REFERENCES

- 1. L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990
- 2. S.N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford University Press, 2010.
- 3. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
- 4. E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge, 1976.
- 5. N. Jenkins," Wind Energy Technology" John Wiley & Sons, 1997
- 6. S.Heir "Grid Integration of WECS", Wiley 1998.

00014				
S.No	Name of the faculty	Designation	Department	Mail-id
1	Mr.A.BALAMURUGAN	ASSOCIATE PROFESSOR	EEE	balamurugan@vmkvec.edu.in

- p-1. - d-=+

		ELECTRIC VEHICLES Category											Т	Р	Cı	redit
											EC- PS	3	0	0		3
PRE This	AMBLE course in	itroduc	es the f	fundam	iental c	concep	ts, prir	nciples, a	analysis	and des	sign of h	ybrid,	electr	ic v	vehicles	5.
PRE	REQUIS	SITE:	Basic	Electri	cal &	Electro	onics E	Engineer	ing.							
COL	JRSE OF	BJECT	TIVES													
1	To unde	rstand	the bas	ic con	cepts a	nd dyn	amics	of electr	ric vehi	cles.						
2	2 To familiarize and design of battery backup.															
3	3 To analyze the characteristics of different types of DC & AC Motors.															
4	To unde	rstand	differe	nt type	s of po	ower tra	ansmis	ssion cor	nfigurati	ion, clut	ch and b	oraking	g .			
5	To study	/ abou	t hybrid	lelectr	ic vehi	cles.										
COL	JRSE OU	JTCO	MES													
On the COL	he succes	sful co	mpletio	on of th	ne cour	se, stu	dents v	will be a	ble to					I I.	ndorato	nd
CO1: Describe the basic concepts of electric vehicles. Understand												liiu				
<u>CO2</u>	CO2: Design the propulsion system for electric vehicles. Evaluate												te			
CO3	: Explain	the co	nstruct	ion, ch	aracter	istics a	and ap	plication	of batt	eries.				1	Analyz	e
CO4	: Elucida	te perf	ormanc	e chara	acterist	tics of	DC&A	AC electi	rical ma	chines.				1	Analyz	e
CO5	: Design	the dri	ve train	mode	l for el	ectric	vehicle	es.						ł	Evaluat	ie
CO6	: Describ	e abou	t the va	rious t	ypes a	nd con	figura	tion of h	ybrid el	ectric v	ehicle.				Apply	
MAI	PPING V	VITH	PROG	RAM	ME OI	UTCO	MES	AND PI	ROGRA	AMME	SPECI	FIC O	UTC	OM	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC)1	PSO2	PSO3
CO1	S	-	-	-	M	-	L	L	-	-	-	-	-		-	-
CO2	S	М	S	L	М	-	L	M	-	-	-	-	-		-	-
CO3	S	-	-	-	Μ	-	-	-	-	-	-	-	-		-	-
CO4	S	-	-	-	М	-	-	-	-	-	-	-	-		-	-
CO5	S	М	S	L	М	-	L	М	-	М	М	-	-		-	-
C06	S	-	-	-	М	-	L	L	-	-	-	-	-		-	-
S- St	rong; M-	Mediu	m; L-L	ow	•	•	•		•	1			•	ł		

-9-1- d-=+

ELECTRIC VEHICLES

Introduction, Components, vehicle mechanics – Roadway fundamentals, vehicle kinetics, Dynamics of vehicle motion - Propulsion System Design.

BATTERY

Basics – Types, Parameters – Capacity, Discharge rate, State of charge, state of Discharge, Depth of Discharge, Technical characteristics, Battery pack Design, Properties of Batteries.

DC & AC ELECTRICAL MACHINES

Motor and Engine rating, Requirements, DC machines, Three phase A/c machines, Induction machines, permanent magnet machines, switched reluctance machines.

ELECTRIC VEHICLE DRIVE TRAIN

Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing. Types – series, parallel and series, parallel configuration – Design – Drive train, sizing of components.

HYBRID ELECTRIC VEHICLES

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press,
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.
- 2. Sandeep Dhameja, "*Electric Vehicle Battery Systems*", Newnes, 2000 .http://nptel.ac.in/courses/108103009

COURS	COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in									
2	Mr. V.Rattankumar	Assistant	EEE	rattankumar@avit.ac.in									
		Professor											

\$-1.- d-=+

			DI	STRI	BUTE	D GI	ENER	ATIC	DN AN	ND		Catego	ory	L	Т	Р	C
					M	ICRO	GRII	DS				EC- PS	5	3	0	0	3
Preamble	e																
To introdu	uce the	fundar	nentals	s of Dis	stribute	ed Gen	eration	and Ir	npleme	entation	n in Mi	crogrid.					
PREREC	QUISIT	ГE : N	il														
COURSI	E OBJ	ЕСТГ	VES														
1		To il	lustrate	e the co	ncept o	of distri	ibuted g	generat	ion								
2		To a	nalyze	the imp	oact of	grid in	tegratio	on									
3		To st	tudy co	ncept c	of Micr	ogrid a	nd its c	configu	ration								
COURSE OUTCOMES																	
On succe	essful c	omple	tion o	f the c	ourse,	the st	tudent	s will	be abl	e to							
СО	1	Stud	y the 1	need fo	or DG'	s and y	variou	s types							Unde	rstar	ıd
СО	2	Und	erstand	d the c	oncept	s and	impact	ts in G	rid Inte	ergrati	on			Understand			ıd
СО	3	Und	erstand	ding of	f the m	icrogr	id type	es and	config	uration	ıs			Understand			ıd
СО	4	Anal conr	lyze th nected	e vario operat	ous typ ion	bes of o	contro	l in mi	cro gri	d in is	landed	and grid	1	Analyze			;
Mapping	with P	rogran	nme ou	itcome	s and	Progra	umme S	Specifi	c Outo	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1		PSO2	PS	603
CO1	S	S	L	-		S	S	-		L	-	-	-		-		М
CO2	М	-	М	-	S	L	M	-	М	L	-	-	-		-		-
CO3	М	-	М	-	S	L	М	-		L	-	-	L		Μ		-
CO4	S	-	S	-	S	М	M	L	-	L	M	-	-		-		L
CO5	S	М	S	S	S	М	S	-	М	L	L	М	-		L		-

UNIT - I	INTRODUCTION	9
Conventional pov resources: review	wer generation: advantages and disadvantages, Energy crises, Nonconventional of Solar PV, Wind Energy systems, Fuel Cells, micro-turbines, biomass, and tic	energy (NCE) dal sources.
UNIT - II	DISTRIBUTED GENERATIONS (DG)	9

-g-1.- d-=+

Concept of distributed generations, topologies, selection of sources, regulatory standards/ framework, Standards for interconnecting Distributed resources to electric power systems: IEEE 1547. DG installation classes, security issues in DG implementations. Energy storage elements: Batteries, ultra-capacitors, flywheels. Captive power plants												
UNIT - III	IMPACT OF GRID IN	TEGRATION		9								
Requirement grid abnorm power syster	s for grid interconnection, lin al operating conditions, islan n: reliability, stability and pov	nits on operational par ding issues. Impact of wer quality issues.	rameters,: voltag	e, frequency, THD, response to a with NCE sources on existing								
UNIT - IV	UNIT - IVINTRODUCTION TO MICROGRID9											
Concept and structure and microgrids	Concept and definition of microgrid, microgrid drivers and benefits, review of sources of microgrids, typical structure and configuration of a microgrid, AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids											
UNIT - VCONTROL AND OPERATION OF MICROGRID9												
modes of op control, pro- microgrid co economics, I TEXTBOO 1. "Voltag and Rez	tection issues, anti-islanding ommunication infrastructure, ntroduction to smart microgri K e Source Converters in Power a Iravani, IEEE John Wiley F	bgrid: grid connected a g schemes: passive, a Power quality issues ds. r Systems: Modeling, C Publications.	and Islanded mo active and com in microgrids, r	ications", Amirnaser Yezdani,								
2. "Power 2006. 3. "Solar F	Photo Voltaics", Chetan Singh	um and High Power", 1 Solanki, PHI learning	Dorin Neacsu, C 3 Pvt. Ltd., New	CRC Press, Taylor & Francis, Delhi,2009								
REFERENC	CES											
 "Wind I "Bioma "Renew edition 	 "Wind Energy Explained, theory design and applications," J.F. Manwell, J.G. McGowan Wiley publication "Biomass Regenerable Energy", D. D. Hall and R. P. Grover, John Wiley, New York, 1987. "Renewable Energy Resources" John Twidell and Tony Weir, Tyalor and Francis Publications, Second edition 											
COURSE DESIGNERS												
Sl No	Name of the Faculty	Designation	Department	Mail ID								
1	S.Prakash	AP(Gr-II)	EEE	sprakash@avit.ac.in								
2												

-g-1.-d-=+

			Pow	er Con	verter	s Anal	lysis ai	nd De	sign		Category	L	T I	P C	redit
											EC-PS	3	0	0	3
PREA	MBL	E													
To Gi	ve an	Introd	uction	to The	e Rece	nt Dev	velopm	ents i	n The	e Pow	er Electroni	ics Con	verters.	This (Course
Introdu	uces th	ne Adv	vanced	Power	Conv	erters	Such a	is Isol	lated 1	Dc-Dc	Converter,	Reacti	ve Elen	nents. I	t Also
Deals	with T	he Syn	chrono	ous Rec	tifiers	and Ca	ascadeo	l Boo	st Con	verter	s.				
PRER Nil	RERQUISITE fil														
COUH	RSE O	BJEC	TIVES	5											
1	Acqu acqui	Acquire a basic understanding of various power converter modules used to build a power electronics system and acquire the ability to select and design suitable circuit.													
2	To in	To impart knowledge on the design of different components for Power converter Systems.													
3	To lea	Γo learn the switching losses of various triggering techniques													
4	To understand the designing concept of various types of chopper and rectifier														
5	To impart knowledge on the design of closed-loop compensators for DC-DC Converter														
COLU		UTCC	MEG												
On the	SE U	sful cor	npletion	n of the	course.	studen	ts will	be able	e to						
1. Sele	ct Powe	er Semi	conduc	tor Swi	tches fo	or Powe	er Electi	ronic c	onvert	ers and	l calculate Lo	osses in	Ren	nember	
2. App	ly the n	eed and	d worki	ng of ar	n Isolate	ed DC-	DC Coi	nverter	for rea	al-time	application.		App	ly	
3. Impl	lement	the Des	sign Rea	active c	ompone	ents for	Power	Electr	onic C	onverte	ers.		Ana	lysis	
4. Dev	elop a N	Model t	he DC-	DC Coi	nverter	Using s	state Sp	ace Te	chniqu	le.			Imp	lement	
5. Mod	lelling o	of Desig	gn com	pensato	r for D	C-DC C	Convert	ers.					App	ly	
MAPI	PING	WITH	PRO	GRAM	ME O	UTCO	OMES	AND	PRO	GRA	MME SPEC	CIFIC	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	_	-	-	-	-	М	S	М	-
CO2	S	S	S	М	М	-	_	-	-	-	-	М	S	М	М
CO3	S	S	S	Μ	М	-	-	-	-	-	-	М	S	М	Μ
CO4	S	М	Μ	L	L	-	-	-	-	-	-	L	S	М	-
CO5	S	S	Μ	М	М	_	_	-	-	-	-	L	S	М	М

S- Strong; M-Medium; L-Low Syllabus

- p-1. - d-=+

TRIGGERING LOSS CALCULATION

Survey of devices: Diode, Thyristor, BJT, IGBT, MOSFET and TRIAC-Realization of Semiconductor switch for one quadrant operation, Current bidirectional operation, Voltage bidirectional operation,

four quadrant operation- Thermal Design of Power Switching Devices-Estimation of loss in switch: Conduction Loss Switching Loss -Blocking Loss- Transistor Switching with Clamped Inductive Load.

ISOLATED CHOPPER CONVERTER

Need for Isolated Converters-Operation and Derivation of Voltage equation: Forward Converter-Fly back converter Push pull converter-Half Bridge and Full Bridge Converter.

DESIGN OF REACTIVE ELEMENTS IN POWER ELECTRONIC SYSTEMS:

Introduction-Design of Inductor: Material Constraint-Design Relationships-Design Steps-Design of Transformer: Design Equations-Design Steps-Different Types of Capacitors for Power Electronics Applications-Related problems on design of Inductor and Transformer and Evaluation of loss in capacitor

DC-DC CONVERTER DYNAMICS

Small Signal Analysis of Converter-State Space Averaging Technique-Steps involved in state space averagingDerivation of Transfer function of Ideal buck, boost converter using state space averaging- Converter Non Idealities.

COMPENSATOR DESIGN AND CURRENT MODE CONTROL

Closed loop requirements-Compensator structure-Design of compensator-Introduction of Current Mode Control Block diagram of Current Mode Control-Advantages of Current Mode control

TEXT BOOKS:

- 1. Ned Mohan, Undeland and Robbin, "Power Electronics: converters, Application and design" John Wiley and sons.Inc,New York,2002.
- 2. Rashid M.H., " Power Electronics Circuits, Devices and Applications ", Prentice Hall India, New Delhi, 2010.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Departme	Mail ID									
			nt										
1	Dr.K.Boopathy	Associate Professor	EEE/AVIT	boopathyk@avit.ac.in									
2	Dr. R. Devarajan	Professor	EEE/ VMKVEC	devarajan@vmkvec.edu.in									
4													

- p-1- d-=+

			D	FNF	WARI	FFN	FRC		IRCES	2		Categor	y I	_ T]	P C
			Г		MADI			1 500		,		EC- PS	3	6 0	(0 3
Preamble	e															
To introd pollute tl	uce the he envi	e funda ronme	imenta nt.	ls of P	V & V	VIND	and ot	her ene	ergy so	ources a	and uti	lizing the	e resou	rces tl	nat le	east
PREREC	QUISIT	ΓE : N	il													
COURSI	E OBJ	ЕСТГ	ΓΙVES													
1		Awa	wareness about renewable Energy Sources and technologies.													
2		Ade	equate inputs on a variety of issues in harnessing renewable													
3		Reco	cognize current and possible future role of renewable energy sources.													
COURSI	E OUT	COM	ES													
On succe	essful c	omple	pletion of the course, the students will be able to													
СО	1	Deve	elop aw	arenes	s about	renew	able en	ergy so	ources a	and tech	nologi	es			App	ly
СО	2	Reca	ll to ge gy	et adequ	iate inp	outs on	a varie	ty of is	sues in	harnes	sing ren	newable		Re	men	nber
СО	3	Mato appli	ch the ications	various S	renew	able en	ergy re	esource	s and te	echnolo	gies an	d their		Re	men	nber
CO	4	Orga	inize ar	nd und	erstand	basics	about	biomas	s energ	зy					App	ly
СО	5	Inter	view to	acquii	e knov	vledge	about s	olar en	ergy						App	ly
Mapping	with P	rogran	nme ou	itcome	s and	Progra	umme S	Specifi	c Out	comes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO	2	PSO3
CO1	S	S	L	-	-	S	S	-		L	-	-	-	-		-
CO2	М	-	M	-	S	L	М	-	М	L	-	-	-	-		-
CO3	М	-	M	-	S	L	M	-	-	L	-	-	-	-		-
CO4	S	-	S	-	S	М	М	L	-	L	М	-	-	-		-
CO5	S	М	S S S M S - M L L M -													

RENEWABLE ENERGY SOURCES

\$-1.- d-=+

Environmental consequences of fossil fuel use, Importance of renewable sources of energy, Sustainable Design and development, Types of RE sources, Limitations of RE sources.

WIND ENERGY

Power in the Wind – Types of Wind Power Plants(WPPs)–Components of WPPs-Working of WPPs- Grid integration issues of WPPs.

SOLAR PV AND SOLAR SYSTEM

Solar Radiation, Radiation Measurement, Solar Thermal Power Plant, Central Receiver Power Plants- Solar Photovoltaic systems : Basic Principle of SPV conversion – Types of PV Systems- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array ,PV Module I-V Characteristics, Efficiency & Quality of the Cell, series and parallel connections, Applications.

BIO MASS ENERGY

Introduction-Bio mass resources –Energy from Bio mass: conversion processes- Biomass Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothermal Electricity. Mini/micro hydro power: Classification of hydropower schemes, Classification of water turbine.

OTHER ENERGY SOURCES

Tidal Energy: Energy from the tides, Barrage and Non Barrage Tidal power systems. Wave Energy: Energy from waves, wave power devices. Ocean Thermal Energy Conversion (OTEC)- Hydrogen Production and Storage- Fuel cell :Principle of working- various types – construction and applications. Energy Storage System-Hybrid Energy Systems.

TEXTBOOK

- 1. Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Learning Pvt.Ltd, New Delhi, 2011.
- 2. D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHI Learning Pvt.Ltd, New Delhi, 2013.

REFERENCES

- 1. A.K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design", PHI Learning Private Limited, New Delhi, 2011 Arvind Krishnan & Others Climate Responsive Architecture, Tata Mcgraw Hill New Delhi 2001.
- 2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 3. Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, Delhi, 2015
- 4. Chetan Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2011.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	K.S.Kavitha Kumari	Assistant Professor	EEE	kavitha.eee@avit.ac.in

- p-1- d-=+

2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
---	------------	---------------------	------------	-----------------------

-9-1- d-=+

		EN	NERG	Y CON	VERS	SION A	AND S	STOR	AGE		Category	L	Т	P (Credit
				Г	FECH	NOLO	GIES				EC-PS	3	0	0	3
PREA	MBL	E													
The air	m of th	ne cour	se is to	under	stand t	he basi	cs of e	energy	conse	ervatio	n technique	s, energ	gy stora	iges in	
industr	ries and	d the a	ssociat	ed eco	nomica	l benet	fits.								
PRER	PRERQUISITE NIL														
COUF	RSE O	BJEC	TIVES	5											
1	1 To provide knowledge on the fundamentals of magnetic circuits, energy, force, and torque of single and multi excited systems.														
2	To pr	ovide k	nowled	lge on t	he trans	formati	ion of e	energy	from s	olar an	d wind.				
3	To in	npart kr	nowledg	ge on Tl	nermal	and Sol	ar Phot	ovolta	ic syst	ems					
4	To ur	derstar	nd the c	oncept	of Mag	netic, E	lectric,	and C	hemica	al Ener	gy Storage s	ystems a	and thei	r applica	itions
5	5 To gain knowledge on energy storage in electric.														
COUF	RSE O	UTCC	OMES												
On the	success	sful cor	npletio	n of the	course,	studen	ts will	be able	e to						
1. Dej	pict the	choice	and rat	ing of e	electrica	ıl mach	inery fo	or selec	cted ap	plicatio	ons		Re	membe	r
2. De system	esign an	d deve	lop a su	iitable h	lydroge	n storag	ge syste	em to b	e used	along	with a fuel c	ell	Ap	ply	
3. Imp	olement	the ch	emical	energy s	storage	process	for rea	al-time	applic	ation			Im	plemen	t
4. An	alysis a	nd desi	gn the	battery	rating f	or vario	ous appl	lication	1				An	alysis	
5. Sel	ect the	best po	wer rat	ing and	perform	nance f	or ener	gy stor	age ap	plication	on		Ap	ply	
МАРІ	MADDING WITH DDOCDAMME OUTCOMES AND DDOCDAMME SDECIELC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO		2 PSO3
CO1	M	S	M	-	М	-	-	-	-	-	_	M	S	M	-
CO2	S	S	S	М	М	-	-	-	-	-	-	M	S	M	M
CO3	M	S	S	М	М	-	-	-	-	-	-	M	S	M	M
CO4	S	М	M	L	L	-	-	-	-	-	-	L	S	M	-
CO5	М	S	М	М	М	-	-	-	-	-	-	L	S	М	М
S- Stro	ong; M	-Medi	um; L-	Low											

-\$-1.-d-=+

ELECTROMECHANICAL ENERGY ALTERATION

Review of magnetic circuits-Principles of Electromechanical Energy - Conversion, General expression of stored magnetic energy, co-energy and force/torque, example using single and doubly -excited system.

ANALYSIS OF WIND AND PV SYSTEMS

Stand alone operation: Fixed and variable speed wind energy conversion systems (WECS), solar system - Grid connection Issues -Grid integrated SCIG and PMSG based WECS-Grid Integrated solar system.

CHEMICAL ENERGY STORAGE SYSTEMS

Introduction about fuel cells – design and principles of operation of a fuel cell – classification of fuel cells, conversion efficiency of fuel cells. Types of electrodes, work output and emf of fuel cell,

Applications of fuel cells. Introduction about Hydrogen energy – hydrogen production – electrolysis, thermo chemical methods. Battery - Types of Batteries - Equivalent Electrical Circuit - Battery Charging - Charge Regulators - Battery Management

MAGNETIC AND ELECTRIC ENERGY STORAGE SYSTEMS

Superconducting Magnet Energy Storage (SMES) systems; capacitor and batteries: comparison and application; super capacitor: Electrochemical Double Layer Capacitor (EDLC), principle of working, structure, performance and application

ADVANCED BATTERIES FOR EV APPLICATIONS

Ultracapacitors: Features- Basic Principles of Ultracapacitors - Performance of Ultracapacitors – Mathematical model, Fuel cells: Operating Principles – Characteristics - Polarization loss - fuel cells Technologies - Comparison of fuel cells, Hybridization of Energy Storage systems.

TEXTBOOK

- 1. S.P.Sukatme, 'Solar Energy Principles of thermal collection and storage,' Second edition, McGraw Hill,2007.
- 2. Mukund R. Patel, 'Wind and Solar Power Systems: Design, Analysis, and Operation, Second Edition, CRC Press, 2009

REFERENCES

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.K.Boopathy	Associate Professor	EEE/AVIT	boopathyk@avit.ac.in
2	Dr. R. Sankarganesh.in	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu

\$-1.- d-=+

			ΡΟΙ	VER S	SVSTI	EM AI	ND SN	IART	CRII)		Categor	ry	L	Т	Р	С
			10,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				UNIL			EC- PS		3	0	0	3
Preamble	e																
To enable options o	e the s f archit	tudent tectura	s acqu l desig	iire kn n, rene	owled ewable	ge on energ	powei y sour	syste ces an	m plaı d stora	nning a ge inte	nd fau gration	lt condi with sm	tion, nart g	sma rid.	urt gri	d, di	fferent
PREREC	PREREQUISITE : Nil																
COURSI	E OBJ	OBJECTIVES															
1		To m	model the power system under steady state operating condition.														
2		To n	model and carry out short circuit studies on power system.														
3		To u	understand the basic concepts, components and architecture of smart grid														
COURSI	E OUT	COM	MES														
On succe	On successful completion of the course, the students will be able to																
CO	1	Cons	struct a	power	r systen	n mode	el under	steady	v state o	operatin	g condi	tion			A	pply	
со	2	Expe syste	eriment em	with th	ne vario	ous fau	lt and	carry o	ut shor	t circuit	studies	on powe	r		A	pply	
СО	3	Defi	ne the s	smart g	rids co	mpone	nts and	archite	ecture						Rer	nemt	ber
СО	4	Find	the va	rious r	enewab	ole ener	gy sou	rces to	reduce	pollutio	on				Rer	nemt	ber
C0	5	List	the role	e of bat	teries a	nd ene	rgy sto	rages							Aı	nalyz	e
Mapping	with P	rogran	nme ou	itcome	s and]	Progra	umme S	Specifi	c Outo	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PS	O3
CO1	S	-	M M L M M L - L														
CO2	L	S	L M S M M L M -														
CO3	S	-	S	S	S	-	-	M	M	L	-	М	-		-		-
CO4	S	S	М	-	S	-	-	М	М	L	-	-	-		-		L
CO5	S	-	S M S M - S M L -														

POWER SYSTEM

Need for system planning and operational studies - Power scenario in India - Power system components -

- p-1- d-==

Representation - Single line diagram - per unit quantities - p.u. impedance diagram - p.u. reactance diagram - Network graph, Bus incidence matrix, Primitive parameters, Bus admittance matrix from primitive parameters.

FAULT ANALYSIS

Assumptions in short circuit analysis - Symmetrical short circuit analysis using Thevenin's theorem - Analysis of unsymmetrical faults at generator terminals: LG, LL and LLG - unsymmetrical fault occurring at any point in a power system

INTRODUCTION TO SMART GRID

Today's Gird Versus Smart Grid, Rationale for Smart Grid, Computational Intelligence, Power System Enhancement, Communication and Standards, Environment and Economics, Shareholders Roles and Function, Architecture, Functions of Components

DISTRIBUTED GENERATION

Solar Energy, PV Systems, Wind turbine Systems, Biomass, Small and Micro Hydro Power, Fuel Cell, Geothermal heat pumps.

ENERGY STORAGE

Batteries, Flow Batteries, Fuel Cell and hydrogen electrolytes, Flywheel, Super conduction magnetic energy storage systems, super capacitors, Simulation and case studies.

TEXTBOOK

- 1. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008.
- 2. James Momoh, "Smart Grid: Fundamentals of design and analysis", John Wiley & sons Inc, IEEE press 2012.

REFERENCES

- 1. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
- 2. Fereidoon P. Sioshansi, "Smart Grid: Integrating Renewable, Distributed & Efficient Energy", Academic Press, 2012.
- 3. Qi Huang, Shi Jing "Innovative Testing and Measurement Solutions for Smart Grid", John Wiley & Sons Inc, 2015.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	K.S.Kavitha Kumari	Assistant Professor (Gr-II)	EEE/AVIT	kavitha.eee@avit.ac.in
2	A.Balamurugan	Assistant Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in

- p-1. - d-=+

		DI	GITAI	SIGN	AL P	ROTE	CTIO	N FOR	RC	Category	/ L	TI	• Ci	redit	
					51	SIE	WIS				EC- PS	3	0 ()	3
PREA The solid- signal period	AMBLE technolo recordeo l process <u>l of tim</u> REOUIS	2 ogy of d by (sing te ne and SITE:	f power Current echniqu in fac Nil	syste Trans es. Th t, this	m pro former us, the subje	otection rs (CT e requ ct add	n has) and irement resses	evolve Voltage tt of lea this ne	d a lot Transforming the china	since ormers is subjo compre	the en (VT), ect has ehensive	ra of by usin chang e manne	electron ng digi ed sign er.	nechani tal ificantly	cal and over a
COU	RSE OI	BJECT	TIVES												
1	Study of	f nume	rical re	lays.											
2	Develop	oing ma	athema	tical ap	proach	n towa	rds pro	tection							
3	Study of	falgor	ithms fo	or num	erical	protect	ion.								
COU	RSE OI	UTCO	MES												
On th	e succes	sful co	ompleti	on of th	ne cour	se, stu	dents v	will be a	ble to						
CO1:	Learn th	ne imp	ortance	of Dig	ital Re	elays							ו	Understa	ind
CO2:	Apply N	Mather	natical	approa	ch tow	ards p	rotectio	on						Apply	r
CO3:	Learn to	o devel	lop vari	ous Pro	otectio	n algo	rithms						1	Understa	ind
CO4:	Simulat	e prote	ection f	or abno	ormalit	ies in v	virtual	environ	ment					Analyz	e
CO5:	Demons	strate p	orimitiv	e relay	s at co	ntinge	ncy sta	ite						Evalua	te
MAP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND PI	ROGRA	MME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	-	L	-
CO2	S	M	S	L	М	-	L	M	-	-	-	-	M	-	М
CO3	S	-	-	-	М	-	-	-	-	-	-	-	-	M	S
CO4	S	-	-	-	М	-	-	-	-	-	-	-	М	-	-
CO5	S	М	S	L	М	-	L	М	-	М	М	-	-	-	L
CO6	S	-	-	-	М	-	L	L	-	-	-	-	-	L	-
S- Str	ong; M-	Mediu	m; L-L	ow											
SYLI	LABUS														

-\$-1.-d-=+

Unit-1

DIGITAL RELAYS

Evolution of digital relays from electromechanical relays, Performance and operational characteristics of digital protection, Evolution of digital relays from electromechanical relays, Performance and operational characteristics of digital protection

Unit-2

SIGNAL PROCESSING

Curve fitting and smoothing, Least squares method, Fourier analysis, Fourier series and Fourier transform, Walsh function analysis

Unit-3

SIGNAL CONDITIONING

Basic elements of digital protection, Signal conditioning: transducers, surge protection, analog filtering, analog multiplexers, Conversion subsystem: the sampling theorem, signal aliasing, Error, sample and hold circuits, multiplexers, analog to digital conversion, Digital filtering concepts, The digital relay as a unit consisting of hardware and software

Unit-4

ALGORITHMS FOR RELAY OPERATIONS

Sinusoidal wave based algorithms, ample and first derivative (Mann and Morrison) algorithm. Fourier and Walsh based algorithms, Fourier Algorithm: Full cycle window algorithm, fractional cycle window algorithm, Walsh function based algorithm, Least Squares based algorithms. Differential equation based algorithms, Traveling Wave based Techniques.

Unit-5

DIGITAL PROTECTION OF POWER SYSTEMS

Digital Differential Protection of Transformers, Digital Line Differential Protection, Recent Advances in Digital Protection of Power Systems.

TEXT BOOKS:

1. Gerhard Zeigler, "Numerical Distance Protection", Siemens Publicis Corporate Publishing, 2006

2. S.R.Bhide "Digital Power System Protection" PHI Learning Pvt.Ltd.2014

REFERENCE BOOKS:

1. A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press,

- f- 1. - d-=+

2009

2. A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press, 1999

		-	-	
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Sathish	Assistant	EEE	sathish@vmkvec.edu.in
		Professor		
2	Mr. V.Rattankumar	Assistant	EEE	rattankumar@avit.ac.in
		Professor		

- p-1- d-==

			DFS		E FI ECTDICAL ADDAD					Catego	ory L	Т	P C	Credit	
			DES	IGN U	T ELI	EUTRICAL AFFARATUS				EC- PS	3	0	0	3	
PREAMBLE . This course offers the preliminary instructions and techniques to design the main dimensions and other major part of the transformer and DC and AC rotating machines. The course also provides the students with an ability to understand the step by step procedure for the complete design of electrical machines.															
PREREQUISITE NIL															
COURSE OBJECTIVES															
1	To study mmf calculation and thermal rating of various types of electrical machines.														
2	To design Armature and field systems for D.C. machines.														
3	To design Core, yoke, windings and cooling systems of transformers.														
4	Design of stator and rotor of induction machines and synchronous machines														
5	To design stator and rotor of synchronous machines														
COURSEOUTCOMES															
On the successful completion of the course, students will be able to															
CO1	Understand basics of design considerations for rotating and static electrical machines Understand														
CO2	Design armature and field of DC machines.									e					
CO3	Design sing and three phase transformer. Create									e					
CO4	Design stator and rotor of induction motor.									e					
CO5	Design and analyze synchronous machines. Analyze														
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	М	L	-	-	-	-	-	-	М	S	M	-
CO2	S	S	S	S	-	-	-	-	-	-	М	М	S	M	S
CO3	S	S	S	S	-	-	-	-	-	-	М	М	S	M	-
CO4	S	S	S	S	L	-	М	-	-	-	М	М	S	M	S
CO5	S	S	S	S	L	L	L	-	-	-	-	М	S	M	-
S-Strong	S-Strong;M-Medium;L-Low														

-9-1- d-=+

ELECTRICAL MACHINES DESIGN

Major considerations in Electrical Machine Design-Concept of magnetic circuit – MMF calculation for various types of electrical machines -Flux leakage – Leakage in Armature-Design of lap winding and wave winding-thermal rating: continuous, short time and intermittent short time rating of electrical machines

DC MACHINES

Construction - Output Equations – Main Dimensions – Choice of specific loadings – Choice of number of poles – Armature design – Design of commutator and brushes – Losses and efficiency calculation

TRANSFORMERS

Construction details –Output rating of single and three phase transformers – Overall dimensions – design of core, Yoke and winding for core and shell type transformers – Estimation of No load current – Temperature rise in Transformers – Design of Tank and cooling tubes of Transformers– Losses and efficiency calculation

INDUCTION MOTORS

Construction details- Output equation of Induction motor – Main dimensions – choice of specific loadings — Length of air gap- Rules for selecting rotor slots of squirrel cage machine- Design of squirrel cage rotor and wound rotor –Magnetic leakage calculations – Operating characteristics : Magnetizing current - Short circuit current – Circle diagram.

SYNCHRONOUS MACHINES

Constructional details-Output equations – choice of specific loadings – Design of salient pole machines – Short circuit ratio – Armature design – Estimation of air gap length – Design of rotor –Design of damper winding – Design of field winding – Design of turbo alternators

TEXTBOOKS

- 1. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2009.
- 2. Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai& Sons, New Delhi, Fifth Edition, 1984.

REFERENCES

- 1. M V Deshpande 'Design and Testing of Electrical Machines' PHI learning Pvt Lt, 2011.
- 2. A.Shanmugasundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age International Pvt. Ltd., Reprint 2007.

COURSEDESIGNERS									
S.No.	NameoftheFaculty	Designation	Department	e-mailid					
1	D.SARANYA	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in					
2	G.RAMAKRISHNA PRABU	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in					

\$-1- d-=+
			н	VDC '	TRAN	ISMIS	SION	SVST	EMS		Catego	ry L	T P	Cre	edit
		BLE:									EC-PS	3	0 0		3
PREA This co harmor improv	MBLE ourse air nics and gements of	: ns to de design of the sy	evelop t of filto ystem, H	he skil ers. Tł IVDC	ls in th nis cou cables	ne area arse als and sin	of HV o helps nulatior	DC por s the s 1	wer trar tudents	nsmission to learr	n with the	e analy e pow	sis of H er contro	/DC con l, Power	verters, factor
PRER	REQUIS	SITE :	NIL												
COU	RSE OF	BJECT	IVES												
	Reco	gnize tl	he signi	ificanc	e and	necess	sity of I	HVDC	systen	n					
2	Desci	ribe the	e power	conve	erters a	and ha	rmonic	filters	used i	n HVDO	C system				
3	Deter syster	mine t m	he requ	uireme	ent of a	approp	oriate c	ontrol	strateg	gies and	stability	v techr	niques us	sed for I	IVDC
4	Illust	rate sui	table co	ontroll	er for	HVDO	C conv	erter to	obtair	desired	l output				
5	Ident	ify the	applica	tion of	f HVD	C syst	tem wi	th prac	tical ex	kamples					
6	Expla	in HV	DC Cal	oles ar	nd sim	ulation	of sys	tems							
COU	RSE OU	JTCON	MES												
On the	e succes	sful con	mpletio	n of th	ne cou	rse, stu	idents	will be	able to)					
CO1	Explair	the sig	gnificar	nce an	d nece	ssity o	f HVD	C syst	em					Unde	rstand
CO2	Discuss	s the po	ower co	nverte	rs and	harmo	onic fil	ters us	ed in H	IVDC s	ystem			Unde	erstand
CO3	Explair	the re	quirem	ent of	appro	priate	contro	l strate	egies ar	nd stabil	lity techr	niques	used for	Unde	erstand
CO4	Design	suitabl	e contr	oller f	or HV	DC co	nverte	r to ob	tain de	sired ou	tput			Ap	oply
CO5:	Explair	n the ap	plicatio	on of I	HVDC	syster	n with	practio	cal exa	mples				Ap	oply
CO6	Explair	n HVD	C Cable	es and	simula	ation o	of syste	ms						A	pply
MAPI	PING V	VITH I	PROG	RAM	ME O	UTCC	OMES	AND]	PROG	RAMM	IE SPEC	CIFIC	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO1	PSO2	PSO3
CO1	М	L	-	-	-	L	-		-	-	-	-	-	-	-
CO2	L	L	-	М	-	L	-	М	-	М	L	М	-	М	-
CO3	S	М	-	-	-	М	М	-	-	-	М	М	-	М	-
CO4	S	S	М	-	М	L	L	S	-	S	S	-	L	S	-
CO5	М	М	L	М	S	S	М	L	-	S	S	-	-	S	L
CO6	М	L	-	-	S	L	-	S	-	S	S	S	-	М	-
S- Stro	ong; M-	Mediur	n; L-Lo	OW	I								•		•

SYLLABUS

- p-1. - d-=+

INTRODUCTION

Development of HVDC technology-Significance of DC transmission-Overview and organization of HVDC systems-Review of the HVDC system reliability-HVDC characteristics and economic aspects

POWER CONVERSION AND HARMONICS

Power conversion - Thyristor, Phase converter, Phase full bridge converter, Pulse converter- Harmonics in HVDC and removal-Determination of resulting harmonic impedance-Active power filter

CONTROL OF HVDC CONVERTER AND SYSTEM

Converter control for an HVDC system-Commutation failure- HVDC control and design - HVDC control functions- Reactive power and voltage stability- Interactions between AC and DC systems

TRENDS FOR HVDC APPLICATIONS

Wind Farm Technology- Modern Voltage Source Converter (VSC)- 800 kV HVDC System- Practical examples of an HVDC system

HVDC CABLES AND SIMULATION OF HVDC SYSTEMS

Introduction of DC cables – Basic physical phenomenon arising in DC insulation – Practical dielectrics – Dielectric stress consideration – Economics of DC cables compared with AC cables. Introduction to system simulation – Philosophy and tools – HVDC system simulation – Modeling of HVDC systems for digital dynamic simulation

TEXT BOOK

- 1. Chan-Ki Kim, "HVDC Transmission Power Conversion Applications in Power Systems", John Wiley & Sons Pvt. Ltd., 2009.
- 2. K.R.Padiyar, "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2002.

REFERENCE BOOKS

- 1. P. Kundur, "Power System Stability and Control", McGraw-Hill, 1993
- 2. J.Arrillaga, "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
- 3. Erich Uhlmann, "Power Transmission by Direct Current", BS Publications, 2004.
- 4. V.K.Sood, "HVDC and FACTS controllers Applications of Static Converters in Power System", Kluwer Academic Publishers, 2004.
- 5. Dragan Jovcic, Khaled Ahmed, "High Voltage Direct Current Transmission: Converters, Systems and DC Grids", John Wiley & Sons, Ltd, ISBN:9781118846667, 2015.
- 6. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age Interantional (P) Ltd., New Delhi, 1990

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMKVEC	sankarganesh@vmkvec.edu.in
2	Mrs.P.Poornima	AP(Gr-II)	EEE/AVIT	poornima@avit.ac.in

-F-1- d-=+

ENERCY AUDIT AND CONSERVATION	Category	L	Т	Р	С
ENERGY AUDIT AND CONSERVATION	EC- PS	3	0	0	3

Preamble

CO24

CO25

S

S

М

S

-

М

In the modern world conservation of energy play a major role. As per the statistics 70% of the energy is lost in transmission and energy theft. Hence more emphasis is needed on energy conversation and for that energy audit has to be done. Energy audit gives the scope of various methods and tools to be followed for energy conservation.

PREREQ	UISITE	: NIL													
COURSE	OBJEC	TIVE	S												
1	To und	erstan	d the b	basics	of elec	trical	energy	and e	nergy	conserv	vation				
2	To ana	lyze th	e elec	trical a	and the	ermal p	perform	nance	of an e	electric	al syst	em			
3	To und	erstan	d the f	inanci	al imp	act of	energy	' mana	gemen	nt					
4	To app	ly the	role o	f energ	y mor	nitoring	g in en	ergy 1	nanage	ement					
5	To und	erstan	d vario	ous asp	pects o	fener	gy aud	it.							
COURSE	OUTCC) MES													
On succes	sful com	pletio	n of tl	he cou	rse, th	ie stud	lents v	vill be	able t	0					
CO1	Apply t therma	the kn l utilit	owled	ge of t	he sub	ject to	calcul	ate the	e effici	ency o	f vario	ous	Ren	nembe	r
CO2	Design consum	suitab ption	ole ene in an	orgy m	onitori zation.	ing sys	tem to	analy	ze and	optim	ize the	energy	Und	erstand	L c
CO3	Improv recover	the the try and	herma: co-ge	l effic neratio	iency on	by des	igning	suitab	le syst	ems fo	or heat		A	pply	
CO4	Use the control	e energ to say	gy aud ve ener	it metł gy ex _l	ods le penditu	earnt to ure	o identi	fy the	areas	deservi	ing tig	hter	A	pply	
CO5	Carry of meeting	out the g the e	cost- energy	benefi needs	t analy of the	vsis of organ	variou ization	s inves	stment	alterna	atives	for	Ev	aluate	
Mapping w	vith Prog	ramm	e outc	omes a	and Pro	ogrami	me Spe	ecific (Outcor	nes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

\$-1- d-=+

_

_

_

_

_

-

_

_

-

М

М

М

М

S

_

L

_

_

_

-

-

CO26	M	L	M	S	-	-	-	-	-	-	-	-	М	М	М
CO27	S	S	-	М	-	-	-	-	-	-	-	-	М	М	М
CO28	S	M	S	М	М	-	-	-	-	-	М	М	S	М	М
C. Character															

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Commercial and Non-commercial energy-Primary energy resources-Commercial energy production-Final energy consumption-Indian energy scenario-Sectoral energy consumption(domestic, industrial and other sectors)-Energy needs of growing economy- energy intensity, long term energy scenario, energy pricing, energy security, energy conservation and its impotance, energy strategy for the future, Energy Conservation Act 2001 and its features.

ELECTRIC AND THERMAL PERFORMANCE

Electricity basics - Direct Current and Alternative Currents, electricity tariff, Thermal Basics-fuels, thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation, steam, moist air and humidity and heat transfer. calculation of heat loss - heat gain, estimation of annual heating & cooling loads, factors that influence thermal performance, analysis of existing buildings setting up an energy management programme and use management - electricity saving techniques

ENERGY MANAGEMENT AND FINANCIAL ANALYSIS

Definition, energy audit, need, types of energy audit. Energy management (audit) approach-understanding energy costs, Bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel and energy substitution, energy audit instruments and metering Investment-need, appraisal and criteria, financial analysis techniques simple payback period, return on investment, net present value, internal rate of return, cash flows

MONITORING OF ENERGY

Defining monitoring & targeting, elements of monitoring & targeting, data and information-analysis, techniques - energy consumption, production, cumulative sum of differences (CUSUM). Energy Management Information Systems (EMIS)

ENERGY EFFICIENCY

Energy efficiency in thermal utilities like boilers, furnaces, pumps and fans, compressors, cogeneration (steam and gas turbines), heat exchangers, lighting system, Motors belts and drives, refrigeration system. Heat recovery from ventilation, air co-generation of heat and electricity, heat recovery and bottoming cycles

TEXTBOOK

1.W. F. Kenny, Energy Conservation In Process Industry.

2. Amlan Chakrabarti, Energy Engineering and Management, Prentice hall India 2011

3.CB Smith, Energy Management Principles, Pergamon Press, New York

REFERENCES

\$-1- d-=+

1.Hand outs New Delhi, Bureau of energy efficiency

2.W. C. Turner, John Wiley and sons, Energy Management Hand Book.

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	V.RATTAN KUMAR	AP(II)	EEE	rattankumar@avit.ac.in

- p-1- d-==

			INNOV	ATIO	N, PRC	DUCT		Cat	egory	L	Т	Р	Credit
			COMN	AERCI		ATION		0	E-IE	3	0	0	3
PREA	MBLE							I			11		
com	nerciali	zation o	of innov	ation a	nd new	products	s in fast	t-paced,	high-tech r	narkets and	match	ing	
techr	nologica	l innov	ation to	market	opport	unities.							
PRER	EQUIS	ITE - N	IIL										
COUR	SE OB	JECTI	VES										
1	Tom	ake stud	lents u	nderstar	nd mult	iple-per	spectiv	e approa	ich in orga	anization to	captu	re kn	owledge
	and c	reativity	v to dev	world	uccessf	ul prodi	ucts an	d servic	es for Vol	latile, Uncer	tain, (Com	blex and
2	Inculc	ate a di	sruptive	though	nt proce	ss to ger	nerate i	deas for	concurrent	and futurist	ic prol	blems	s of
	societ	y in gen	eral and	l marke	ts in pa	rticular	which f	focus on	commercia	alization	1		
3	Impro	ved und	lerstand	ing of c	organiza	ational b	est prac	ctices to	transform	exciting tech	nolog	y into)
1	Critic	siui pro	second	na serv	ices	ation not	licies a	nd practi	ces in oras	nizations es	necial	ly fro	m a
	cultura	al and le	eadershi	p point	of view	v	neres a	nu pracu	ces in orga		peeran	Iy 110	III a
5	Explai	in why i	innovati	on ises	sential t	to organi	izationa	al strateg	y – especia	ally in a glob	oal env	vironi	nent
COUR	SE OU	тсом	ES										
On the	success	ful com	pletion	of the c	course,	students	will be	e able to					
CO1: 1	Underst	and the	role of	innovat	ion in g	gaining a	ınd mai	ntaining	competitiv	ve advantage	,	Une	derstand
CO2: In	ntegrate	the inn	ovation	basis a	nd its r	ole in de	ecision	making e	especially 1	under uncert	ainty	Ap	oly
CO3: A	nalyze	busines	s challe	nges in	volving	, innovat	tion ma	inagemei	nt			Ap	oly
CO4: H	laving p	problem	solving	g ability	– solvi	ing socia	al issue	s and bus	siness prob	lems		Ap	oly
CO5: C	Comprel	nend the	differe	nt sour	ces of in	nnovatio	n					App	ply
MAPP	ING W	ITH P	ROGR	AMME	OUTO	COMES	AND	PROGR	AMME S	PECIFIC O	OUTC	OME	2 S
COs	Р	Р	Р	Р	Р	Р	Р	РО	PO9	PO10	PO	11	P012
	01	02	03	04	05	06	07	8					
CO1	M	-	_	-	-	M	S	S	-	M	-		-
CO2	S	S	S	М	M	M	-	-	-	-	-		-
CO3	S	S	S	М	M	M	-	-	-	-	-		-
CO4	S	S	S	М	M	M	-	-	-	-	-		-
CO5	S	S	S	М	M	M	-	-	-	-	-		-
S-Stro	ng: M-N	Medium	: L-Lov	v									

-9-1- d-=+

Pre-launch, during launch and Post launch preparations;

SYLLABUS:

Introduction to Innovation Management - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and Organizational Change, 5th edition, Wiley.

Reference Books:

1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.

2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

- p-1. - d-=+

	NEV	W VEN	TURE	PLAN	NING A	ND	Cat	egory	L	Т	Р	Credit
		Μ	IANAG	EMEN	T		O	E- IE	3	0	0	3
PREAMBLE		_		_			1		ļ	11		Į
Contempora	ry meth	ods and	l best pi	actices	for the e	entrepre	eneur to	plan, launc	h, and opera	ite a no	ew	
		l of a bu	usiness	pian								
COUDSE OB	IIE - P	VES	uneu									
COURSE OB		VES	10 1	•	11 .1	• •				• •	•	
l An op	portuni	$\frac{1}{1}$ tor set	elf-analy	ysis, and	d how th	$\frac{11}{1}$ s relat	$\frac{1}{1}$	cess in an	entrepreneur	rial en	viron	ment.
$\frac{2}{2}$ Inform	$\frac{1}{1}$	na unae		ng nece	essary to	launch	and gro	w an entre	preneurial ve	enture.		
3 A real	1stic pre	eview of	t ownin	g and o	perating	an ent	repreneu	rial ventur	e.	1		
4 An en	treprene ed	eur mus	t unders	stand th	e diversi	ity, em	otional ii	nvolvemen	t, and worki	oad ne	cessa	ary to
5 The or	pportun	ity to de	evelop a	a busine	ss plan.							
COURSE OU	тсом	ES										
On the success	ful com	pletion	of the c	course,	students	will be	e able to					
CO1: Explain	the cond	cept of 1	new ver	nture pla	anning, c	objectiv	ves and f	unctions a	nd its		Une	derstand
components.	.1 1	• 1	•	1		·.	· · ·		1 '			1
CO2: Analyze	the bus	iness pl	an issu	es and i	remunera	ation pi	ractices i	n startups	business.		Ap	oly
whether to "go	o for it"	or not.			point wi	iere yo	u can nn	cingentiy a			Ap	JIY
CO4: Compare	e and co	ntrast tl	ne diffe	rent for	ms entre	epreneu	rial envi	ronment in	terms of the	eir	App	ply
CO5: Explore	the busi	ness pl	25. an and f	nusiness	s model o	canvas	for your	idea			Api	olv
MAPPING W	ITH P	ROGR	AMME		COMES	AND	PROGR	AMME S	PECIFIC O	OUTC	OME	ES ES
COs P	Р	Р	Р	Р	Р	Р	PO	PO9	PO10	PO	11	P012
01	02	03	04	05	06	07	8	107	1010	10		
CO1 M	-	-	-	-	M	S	S	-	М	-		-
CO2 S	S	S	М	M	M	-	-	-	-	-		-
CO3 S	S	S	М	M	M	-	-	-	-	-		-
CO4 S	S	S	М	M	M	-	-	-	-	-		-
CO5 S	S	S	М	M	M	-	-	-	-	-		-
S- Strong; M-I	Medium	; L-Lov	V									
SYLLABUS: STARTING N	NEW V	ENTUI	RE: Op	portuni	ty identi:	ficatior	n - Searcl	h for new i	deas - Sourc	es of i	nnov	ative

-\$-1.-d-=+

ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising - How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

- p-1- d-=+

		50	CIAL I	INTE	DDFN	FUDSH	TD	Cat	egory	L	Т	Р	Credit
		50				LUNSI		Ol	E- IE	3	0	0	3
PREA	MBLE	I											
Socia	al entre	preneurs	ship inv	olves th	ne creati	ivity, im	aginati	on and ii	nnovation	often associa	ited w	ith	
entre	preneui	ship.											
PRER	EQUIS	ITE - N	lil										
COUR	SE OB	JECTI	VES										
1	To pro entrep	ovide sto reneurs	udents v hip	vith a w	vorking	knowled	dge of t	the conce	epts, oppor	tunities and	challe	nges	of social
2	To de	monstra	te the r	ole of s	social e	ntrepren	eurship	in creat	ting innova	ative respons	ses to	critic	al social
	needs	(e.g., h	unger, p	overty,	inner c	ity educ	ation, g	global wa	arming, etc	<u>.</u>			
3	To en domai	gage in n of soc	a colla a colla	borativ eprenei	e learni 1rship	ng proc	ess to	develop	a better ur	nderstanding	of th	e con	itext and
4	To he	lp prepa	re you j	persona	lly and	professi	onally	for mean	ingful em	ployment by	reflec	ting o	on the
	issues	of socia	al entrep	oreneur	ship.								
5	Engag	e with a	a divers	e group	of soci	al entrep	oreneur	S					
COUR	SE OU	тсом	ES										
On the	success	ful com	pletion	of the o	course,	students	will be	e able to					
CO1: E	Explain	the cond	cept soc	ial entr	epreneu	rship an	d distir	nguish its	s elements	from across	a	Un	derstand
continu	um of o	organiza	tional s	tructure	es from	traditior	nal non	profits to	o social ent	erprises to			
traditio	nal for	profits		0 1		•	• .•	•	• 1	• 1			1
CO2: A	Analyze	the ope	rations	of a hui	man ser	vice org	anizatio	on using	social enti	epreneurial		Ap	ply
$CO3 \cdot A$	uon and	e Socia	y asses	$\frac{\text{sment } a}{\frac{1}{2}}$	ind diag	1000000000000000000000000000000000000	DOIS. Iean sta	rtun met	thods for n	lanning		Δη	nly
develor	ning, tes	sting la	unching	and ev	valuating	g social	change	ventures	s.	laining,			pry
CO4: (Compare	e fundin	g option	ns for s	ocial ch	ange vei	ntures.					Ap	ply
CO5: 1	The outc	omes o	f social	entrepr	eneursh	ip are fo	cused	on addre	ssing persi	stent social		Ap	plv
probler	ns parti	cularly	to those	who a	re marg	inalized	or poor	r.	61				
MAPP	ING W	ITH P	ROGR	AMMF	COUT(COMES	AND	PROGR	AMME S	PECIFIC C	OUTC	OMI	ES
COa					-	D	D	DO	DOA	DO10	DO		D013
	Р	P	Р	Р	P	Y	r	PO	PO9	POIO	PO	11	PUIZ
	P 01	P 02	P 03	P 04	Р 05	Р 06	P 07	PO 8	PO9	POI0	PO	11	PUIZ
CO1	Р 01 М	P 02 -	P 03 -	P 04 -	P 05 -	Р 06 М	P 07 S	8 S	-	РО10 М	- PO		- P012
CO3 CO1 CO2	Р 01 М S	P 02 - S	P 03 - S	Р 04 - М	Р 05 - М	Р 06 М М	P 07 S	PO 8 S -	- -	M -	- PO		- -
CO1 CO2 CO3	P 01 M S S	P 02 - S S	P 03 - S S	Р 04 - М М	Р 05 - М М	Р 06 М М М	P 07 S -	PO 8 S -	- - -	PO10 M - -			- - -

-g-1.-d-=+

CO5	S	S	S	М	М	М	-	-	-	-	-	-
S- Strop	ng; M-N	Aedium	; L-Lov	v								

SYLLABUS:

Social entrepreneurship – dimensions of social entrepreneurship – social change theories – equilibrium and complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

\$-1.- d-=+

17MBHS	01		ENGI	INEE	RING	STAF	RTUPS	5	Categ	ory	L	Т	Р	Credit
			AND	ENTI MAN	REPR IAGEI	ENEU MENT	JRIAL F	·	OE-	IE	3	0	0	3
PREAMBLE:														
A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and														
scalable busine	ss mod	el. Mo	ore sp	oecific	ally, a	startu	p is a r	newly	emerge	d busin	ess ver	ture that	t aims	s to develop
a viable business model to meet a marketplace needs or wants in an optimum manner.														
PREREQUISITE: Nil														
COURSE OBJECTIVES:														
1. To understand the basics of Startups Management and components.														
2. To a	2. To analyze the startups fund management practices													
3. To practice the various kinds of stocks and employment considerations in startups.														
4. To apply the importance of intellectual property rights and its procedures.														
5. To explore the entrepreneurial mindset and culture.														
COURSE OUTCOMES:														
After successful	comple	etion o	of the	course	e, stud	ents wi	ill be al	ble to						
CO1: Explain	the con	cept c	of eng	ineeri	ng star	tups, o	objecti	ves an	d functi	ions and	d its co	mponen	ts.	Understand
CO2: Analyze	the star	rtups	fundi	ng issu	ues and	d remu	ineratio	on pra	ctices ir	n startup	os busin	ness.		Analyse
CO3: Analyze	the var	ious l	kinds	of sto	cks and	d emp	loymer	nt opp	ortunitie	es and c	conside	ration in	1	Analyse
startups busines	SS.													
CO4: Compar	re and o	contra	ast the	vario	us fori	ns of i	intellec	ctual p	roperty	protect	ion and	l practic	e.	Analyse
CO5: Explore	the entr	repren	neuria	l minc	lset an	d cultı	are that	t has b	een dev	veloping	g in			Evaluates
compani	ies of al	ll size	s and	indus	tries.									
MAPPING	WITH	I PRO	OGR	AMM	E OU	TCON	MES A	ND P	ROGR	AMM	E SPE	CIFIC	OUTC	COMES
COs PO1	PO2 P	03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 M	-	-	-	-	М	М	S	-	М	-	М	-	L	L
CO2 S	S	M	М	М	L	-	-	-	-	-	М	L	L	-
CO3 S	S	S	М	М	М	-	-	-	-	-	М	L	-	М
CO4 S	S	S	М	М	М	-	-	-	-	-	М	-	М	L
CO5 S	S	-	М	М	М	-	-	-	-	-	М	М	М	М

S- Strong; M-Medium; L-Low

SYLLABUS:

Elements of a successful Start up: Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan -

-P-1- d-=+

specific problems and challenge in startup.

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

\$-1.- d-=+

	INTELLECTUALPROPERTY	Category	L	Т	Р	Credit				
	RIGHTS	OE-IE	3	0	0	3				
PREAMBLE: The course	e is designed to introduce fundamental as	pects of Intellectu	al prop	berty R	ights to	o students				
who are going to play a major role in development and management of innovative projects in industries.										
PREREQUISITE: Nil										
COURSE OBJECTIVES:										
1. To introduce fundamental aspects of Intellectual property Rights										
2. To disseminate l	knowledge on patents and copyrights									
3. To disseminate knowledge on trademarks, Design and Geographical Indication (GI),										
4. To disseminate knowledge onPlant Variet, Layout Design Protection and create awareness about										
current trends in	IPR									
5. To disseminate l	knowledge onLegislation of IPRs and A	Alternate Dispute	e Reso	lution						
COURSE OUTCOMES										
After successful complet	ion of the course, students will be able t	0								
CO1: Understand the imp	portant of intellectual property rights					Understand				
CO2: Apply for the pater	ts					Apply				
CO3: Understand and ap	ply for the copyrights					Understand				
CO4: Understand the im	portant of trademarks					Apply				
CO5: Appreciate the imp	portance of IPR and its related issues					Understand				
MAPPING WITH P	ROGRAMME OUTCOMES AND	PROGRAMME	SPEC	CIFIC	OUT	COMES				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	М	-
CO2	L	S	S	M	М	L	-	-	-	-	-	L	М	L	-
CO3	L	S	L	М	М	L	-	-	-	-	-	L	М	L	-
CO4	L	S	S	S	М	L	-	-	-	-	-	L	L	L	-
CO5	L	S	S	М	-	L	-	-	-	-	-	L	М	L	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Unit 1 - Overview of Intellectual Property

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in

-P-1- d-=+

abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967, the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994.

Unit 2 - Patents & Copyright

Patents - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application -Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

Copyright - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

Unit 3 – Trademarks, Design and Geographical Indication (GI)

Trademarks: Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

Design: Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

Geographical Indication (GI): Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

Unit 4 - Plant Varieties, Layout Design and Indian National Intelectual Property Policy

Plant Variety Protection: Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

Layout Design Protection: Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

Indian National Intelectual Property Policy: India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

UNIT - V: Legislation of IPRs and Alternate Dispute Resolution

Legislation of IPRs: The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act,

- p-1- - -===

Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration

- Effective Mechanism for Business Issues.

Text Books:

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., &Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

Reference Book:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	P. S.	Associate	Management	dydirectormanagementstudies@avit.ac.in
	Balaganapathy	Professor		
2	A Mani	Associate	Management	mani@ymkyec.edu.in
2		Professor	wanagement	mama, vink vec.edu.m

-P-1- d-=+

					PRI	NCIPI	LES O	F			Categor	ry L	Т	Р			
				T	BIC NSTR	OMED	ICAL NTATI	ION			OE-EA	A 3	0	0			
PREA Toenab	MBLE olethestu	udentsto	odevelo	pknowl	ledgeofj	princip	les,desi	gnandaj	pplicati	onsof the	Biomedi	cal Instr	uments				
PRER	EQUIS	ITE-N	IL														
COUR	SEOB	JECTI	VES														
1	Tokno	owabou	tbioele	ctricsig	nals,ele	ctrodes	anditsty	/pes.									
2	2 ToknowthevariousBiopotentialrecording methods.																
3	3 TostudyaboutpatientmonitoringconceptandvariousPhysiologicalmeasurementsmethods.																
4	Tostudytheprincipleofoperationbloodflowmeter,bloodcellscounter.																
5	5 Tostudyaboutbiochemicalmeasurementsanddetailstheconceptofbiotelemetryandpatientsafety.																
COUR	COURSEOUTCOMES																
Onthes	Onthesuccessfulcompletionofthecourse, students will be able to																
CO1.	Explain	thediffe	erent Bi	osignal	or biop	otential	•						Und	ersta	ınd		
CO2.	Discuss	thewor	kingpri	ncipleso	ofdiagn	ostican	dtherap	euticeq	uipmen	ts.			Und	ersta	ınd		
CO3.	Examin	ethevar	riousins	trument	tslikeas	ECG,E	MG,EE	G,X-ra	y mach	ine.			App	ly			
CO4 .	Illustrat	emedic	alinstru	mentsb	asedonj	princip	lesanda	pplicati	onused	in hospita	al.		Ana	lyze			
CO5.	Analyze	eandcal	ibratefu	Indame	ntalbior	nedical	instrum	entatio	nusedin	hospital	•		Ana	lyze			
MAPP	INGW	ITHPF	ROGRA	AMME	OUTC	OMES	ANDP	ROGR	AMMF	SPECII	FIC OUT	ГСОМЕ	S				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02		
CO1	М			-								L	M	-			
CO2	М								L			L	M	-			
CO3	S	S	М	S	М				М			М	М	N	M		
CO4	S	М	М	М	L			L	S	L		S	M	;	s		
CO5	S	S	М	М	L	М		L	S	L		S	M		s		
S-Stror	ng:M-M	edium:	L-Low					$\begin{array}{c c c c c c c c c c c c c c c c c c c $									

SYLLABUS

BIOELECTRICSIGNALSANDELECTRODES

Basicmedicalinstrumentationsystem,OriginofBioelectricPotential,Recordingelectrodes–ElectrodeTissueinterface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jel creams, Microelectrodes.

BIOAMPLIFIERANDBIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, I Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENTMONITORINGSYSTEMANDNONELECTRICALPARAMETERS MEASUREMENTS System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood

- p-1- d-=+

measurement, Measurement of temperature, Respiration ratemeasurement, cardiacoutput measurement, Measurement or rate, Plethysmography technique.

BLOODFLOWMETERS, BLOODCELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of bloo Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO-CHEMICALMEASUREMENTSANDBIOTELEMETRYANDPATIENTSAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-a Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. KhandpurR.S, **"Hand-bookofBiomedicalInstrumentation"**, TataMcGrawHill, 2ndEdition, 2003.
- 2. LeslieCromwell, FredWeibellJ, ErichPfeiffer. A, "BiomedicalInstrumentationandMeasurements", Prentic

India, 2nd Edition, 1997.

REFERENCES:

1. JohnG.Webster, "MedicalInstrumentationapplicationanddesign", JohnWiley, 3rdEdition, 1997. Carr, JosephJ, Brown, John.M, "IntroductiontoBiomedicalequipmenttechnology", JohnWileyandsons, New York Edition, 1997.

			-	
S.No.	Nameofthe Faculty	Designation	Department	Mail ID
1	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.V.Prabhakaran	AssistantProfessor(Gr-II)	BME	prabhakaran.bme@avit.a
3	Mrs.S.Vaishnodevi	AssistantProfessor	BME	vaishnodevi@vmkvec.ed
4	Ms.LakshmiShree	AssistantProfessor	BME	lakshmishree.bme@avit.

Category L T P

- p-1- d-=+

]	BIOSE	NSOR	SAND	FRANS	SDUCE	CRS		OE-H	EA 3	0	0	3
PREA The co compo highlig	PREAMBLE The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.														
PREREQUISITE-Nil															
COURSEOBJECTIVES															
1	Touse	ethebas	icconce	ptsoftra	ansduce	ers,elec	trodes a	andits c	lassific	ation.					
2	Todis	cussthe	evarious	s typeso	of electr	odes.									
3	Todet	ermine	thereco	ordingo	fbiologi	ical cor	nponen	ts.							
4	Toem	ploythe	eknowl	edgeine	electroc	hemica	landop	ticalbio	sensors	•					
5	5 Tooutlinethevariousbiologicalcomponentsusing biosensors.														
COUR	COURSEOUTCOMES														
Onthes	success	fulcom	pletion	oftheco	urse,stu	dentsw	illbeab	leto							
CO1 .I	Describ	ethewo	rkingpr	rinciple	s of trai	nsducer	s.						Und	erstand	
CO2.	Explair	thevari	ious typ	besof el	ectrode	s.							Und	erstand	
CO3.	Utilize	various	FETser	isorsfor	recordi	ngofbio	ologica	lcompo	nents.				App	ly	
CO4.	Disting	uishvaı	riousbic	osensor	slikeele	ctroche	emicala	ndoptic	calbiose	ensors.			Ana	lyze	
CO5.	Analyz	ethebio	logical	compoi	nentsus	ingbios	ensorsi	nvariou	ıs appli	cations.			Ana	lyze	
MAPP	PINGW	ITHPI	ROGR	AMMI	EOUTO	COME	SANDI	PROG	RAMM	IESPEC	IFIC O	UTCO	AES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	М	М	М
CO4	S	S	L	S		S	М	М	S			М	М	M	S
CO5	S	S	L	S		S	М	М	S			S	М	М	S

S-Strong;M-Medium;L-Low

SYLLABUS

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezoresistive transducers, photoelectric transducers.

BIOPOTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemicalelectrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor,

-F-1- d-=+

chemical fibro sensors.

APPLICATIONSOFBIOSENSORS:

Bananatrode, bloodglucoses ensors, noninvasive bloodg as monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S.Kalsi, "ElectronicInstrumentation & Measurement", TataMcGrawHILL, 1995.
 - 2. BrainREggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
 - $\label{eq:static} 3. Shak thick atteriee, ``BiomedicalInstrumentation'', Cengage Learning, 2013.$
- 4. JohnGWebster, "MedicalInstrumentation: Application and design", JohnWileyPublications, 2001.

REFERENCES:

1. K.Sawhney, "Acoursein Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.

2. JohnPBentley, "**PrinciplesofMeasurementSystems**", 3rdEdition, PearsonEducationAsia, (2000Indianreprint). GeddesandBaker, "**PrinciplesofAppliedBiomedicalInstrumentation**", 3rdEdition, JohnWileyPublications, 2008.

	SEDESIGNERS			
S.No.	Nameofthe Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor&Head	BME	hemalk@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Mr.V.Prabhakaran	AssistantProfessor(Gr-II)	BME	Prabhakaran.bme@avit.
4	Mrs.S.Vaishnodevi	AssistantProfessor	BME	vaishnodevi@vmkvec.e

\$-1.- d-=+

		Category	L	Т	Р	Credit
	INTRODUCTION TO BIOFUELS	OE-EA	3	0	0	3
PRFAMBI F						

PREAMBLE

CO2

CO3

CO4

CO5

-

S

-

-

S

-

М

-

-

М

-

-

S

М

S

-

М

_

М

-

-

М

L

-

L

-

L

-

-

L

-

S

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To unde	erstand	d the o	liffere	ent typ	bes an	d diffe	erence	s betw	veen ex	isting e	energy	resourc	es.	
2	To unde	rstand	l the in	mproc	urem	ent, ut	ilizati	on an	d their	impact	ts on so	ociety a	and env	ironme	ent
	To gain	knov	vledge	e aboi	ut the	exist	ing di	fferer	t biofi	uels an	d the	method	ls of pr	oducti	ion from different
3	sources														
4	To intro	duce	the te	chono	logies	s invo	lved in	n the p	produc	tion, cł	naracte	rizatio	n of bio	fuels	
	To impa	icrt th	e kno	wledg	ge and	appli	cation	s of b	iofuel	in varie	ous sec	tors ar	nd their	benefi	icial aspects to the
5	society.														
CO	URSE C	OUTC	OME	ËS											
Afte	er the suc	cessf	ul cor	npleti	on of	the co	urse, 1	learne	r will ł	be able	to				
CO	1. Under	stand	the ex	isting	and e	emerg	ing bi	omass	to ene	ergy tec	chnolog	gies			Remember
CO2	2. Under	stand	the co	oncept	of 1 st	gener	ration,	2 nd g	enerati	ion and	advan	ce biof	uels		Understand
CO3	3. Appra	ise the	e tech	no-eco	onomi	ic ana	lyses o	ofbio	fuel co	nversio	n tech	nologie	es		Understand
CO4	4. To art	iculate	the c	oncep	tofa	bioref	inery	syster	n and l	be able	to dev	elop m	ajor uni	it	
oper	rations o	f an ir	ntegra	ted bi	orefin	ery									Apply
CO	5. Illustra	ate th	e envi	ronm	ental	implic	ations	3							Apply
MA	PPING	WIT	H PR	OGR				DMES	AND	PROC	GRAM	ME SI	PECIFI		
		P02	1	PU4	PU5	PU6	ru/	TU8	PUY	PUIU	PUII	P012	rsul	P502	1 1 1
COL	3	-	L	-	IVI	-	5	L	-	-	-	-	3	-	L

\$-1.- d-=+

-

L

-

М

-

-

-

-

-

-

-

-

-

-

-

-

-

S

-

-

S

-

S

_

L

L

М

L

S- Strong; M-Medium; L-Low SYLLABUS

OVERVIEW OF BIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

OTHER BIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

1.Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech,2011

COURS	COURSE DESIGNERS											
	Name of the											
S.No	Faculty	Designation	Department	Mail ID								
		Assistant Professor –										
1	Dr.A.Balachandar	Gr-II	Biotechnology	balachandar.biotech@avit.ac.in								
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in								

\$-1.- d-=+

										Categor	·y	L	Т	Р	Credit
		FO TE	OOD A	ND N OLO(IUTRI GY	TION				OE-E	A	3	0	0	3
PREA	MBLE											L	L		
The co	ourse ai	ms to	enabl	e the s	studen	ts to u	nderst	tand tł	ne phys	sicochei	mical, 1	nutritio	nal, mic	robio	logical and
sensor	y aspec	cts, T	o fam	iliariz	e the	studer	nts abo	out the	e proce	essing a	ind pre	servatio	on techi	niques	s. To emphasize
the im	portanc	e of f	food s	afety,	food a	quality	, food	l plant	sani	tation, f	food la	ws and	regulat	ions,	food engineering
and pa	ckagin	g in f	ood in	dustry	<i>.</i>										
PRER	EQUIS	SITE -	– NIL												
COUR	RSE OF	BJEC	TIVES	5											
1 U	ndersta	nd the	tradit	ion foo	od prod	essing	g techr	niques	and the	basics	concept	of foo	d bioche	emistry	1
2 D	emonst	rate th	ne proc	luct de	velop	nent te	echnia	ue. au	alitv an	d conta	minant	check			
3 T	o articu	late th	eir tec	hnical	know	ledge	for inc	lustria	l purpo	se					
4 D	escribe	natio	nal foc	d laws	s and s	tandar	ds								
5 La	aws and	l quali	ities of	stand	ard for	food	produc	ets							
COUR	RSE OU	JTCO	MES												
After t	he succ	essful	comp	letion	of the	course	, learn	er will	l be abl	e to					
CO1: F	Recall th	he pro	cessin	g tech	niques	practi	ced in	olden	days ai	nd the b	iologica	al proce	ess		Remember
CO2. I	llustrate	e the r	nethod	ls for a	nimal	produ	ct deve	elopm	ent, qua	ality cor	ntrol and	i also s	creen th	e	Understand
CO3.T	ransfer	the te	chniqu	ies in s	scaling	up for	r indus	strial n	eeds						Apply
CO4.]	Interpre	et and	Troub	leshoo	t instru	uments	s to ma	aintain	accura	ıcy					Apply
CO5. I	Develop) stand	lards f	or foo	d addit	ives				-					Apply
МАРР	PING W	итн	PRO	GRAN	AME (оптс	OMF	S ANI	D PRO	GRAM	IME SI	PECIF		COM	IFS
			INC			5010						Len			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	02 PSO3
C01	5	- M	-	-	-	-	-	-	-	-	-	_	-	-	-
CO3	L	M	S	М	L	_	-	_	-	_	_	_	М	L	-
CO4	М	S	S	М	L	-	-	-	-	-	-	-	S	S	-
CO5	-	S	S	М	М	-	-	-	-	-	-	М	L	S	-
S- Stro	ng; M-	Mediu	ım; L-	Low											
SYLL.	ABUS ODUC	ΓION	TO F	OOD	BIOT	ECHI	NOLC)GY							

-g-1.-d-=+

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

HURDLE TECHNOLOGY:

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

- 1. Potter, Norman. M. Food Science, 5th Ed. Springer US
- 2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.
- 3. B. Srilakshmi., (2002) Food Science, New Age Publishers.

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

\$-1.- d-=+

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

-9-1- d-=+

			DICA	CEEDI	DICIZ			Ca	tegor	у	L	T	,	Р	Cre	edit
			DISA MAN	ISTERI MAGEN	RISK IENT			(DE – E/	4	3	0	0)		3
PREA	MBLI	E	1													
PRER	EQUI	SITE														
NIL																
COU	RSEC	BJEC	FIVES													
-	1	Tostudy	about th	neDisast	erManag	gement	Cycles									
	2	ToStudy	yaboutth	neDisast	erComm	unitya	ndplan	ning								
	3	ToUnde	erstandtł	neChalle	ngespos	edbyD	isaster	stothed	commu	unity						
2	4	Tostudy	abouted	pingcon	ceptsfor	bothna	aturalaı	nd mai	nmade	disaste	ers					
	5	Tostuc	lyabouts	strengthe	eningtec	hnique	sforstr	uctura	landno	nstruc	turalm	easure	s			
COUR	SE O	UTCO	MES													
Onthes	uccess	sfulcom	pletion	ofthe co	ourse,st	udents	willbe	able t	0							
CO1. U	ndersta	indingD	isasters,	man-ma	deHazaı	dsand	Vulnera	abilitie	es			Ur	nderstand	landA	pply	
CO2. U	ndersta	undingdi	saster m	anagem	entmech	anism						Ap	ply			
CO3To	ogainkr	owledge	eabout o	organizat	ionsinvo	olvedin	ndisaste	ercom	nunity			Ap	ply			
СО4.То	obuilds	killstore	spondto	odisaster	s							Ap	ply			
CO5. Ui	ndersta	undingca	pacityb	uildingc	oncepts	andpla	nningo	fdisas	terman	ageme	ents	Ur	nderstand	landA	pplv	
МАРР	PING	WITH	PROGE	RAMM	FOUT	COM	ES AN	NDPR	OGR		(ESP)	ECIF	ICOUT	CON	IES	
			AUUI	TT FIATIAT						PO1	PO	PO		PS	PS	PS
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	11	12	PSO1	02	03	04
CO1	L	L	L	L	L	L	М	L	L	М	L	М	М	L	L	М
CO2	М	М	L	L	М	L	S	L	L	М	М	S	S	L	L	S
CO3	S	М	L	L	М	L	М	L	L	М	S	S	М	L	L	S
CO4	М	М	L	L	М	L	М	L	L	S	S	S	S	L	L	М
CO5	S	S	L	L	S	L	S	L	L	S	М	М	S	L	L	S
S-Stro	ng:M	Mediu	m;L-L	ow												

-g-1.-d-=+

SYLLABUS UNITIINTRODUCTION

Overview of Disaster Management – Distinguishing between an emergency and a Disaster situation.Disaster Management Cycle – Disaster management Act and Policy in India; Organisational structurefordisastermanagementinIndia;Preparationofstateanddistrictdisastermanagementplans-

PhaseI: Mitigation, and strategies; hazard Identification and vulnerability analysis. Disaster Mitigation

andInfrastructure,impactofdisastersondevelopmentprogrammes,vulnerabilitiescausedbydevelopment, developingadraftcountry-leveldisasteranddevelopmentpolicyPhaseII:Preparedness, Disaster Risk Reduction(DRR), Emergency Operation Plan (EOP) Phases III and IV:Response and recovery, Response aims, Response Activities, Modern and traditional responses todisasters,DisasterRecovery,andPlan

UNITII DISASTERPLANNING

DisasterPlanning-DisasterResponsePersonnelandduties,CommunityMitigationGoals,Pre-

DisasterMitigationPlan,PersonnelTraining,VolunteerAssistance,School-

based Programmes, Hazardous Materials, Ways of storing and safely handling hazardous materials, Coping with Exposure

UNITIIIDISASTERCOMMUNITY

Disaster Community-Community-based Initiatives in Disaster management, need for Community-Based Approach, categories of involved organizations: Government, Nongovernment organizations(NGOs), Regional AndInternational Organizations, Panchayaths, Community Workers, NationalAnd Local Disaster Managers, Policy Makers, Grass-Roots Workers, Methods Of Dissemination OfInformation, Community-Based Action Plan, Advantages/Disadvantages Of The Community BasedApproach

UNITIV COPINGWITHDISASTER

Coping Strategies; alternative adjustment processes - Changing Concepts of disaster management - IndustrialSafetyPlan;Safetynormsand survivalkits-Massmediaand disastermanagement

UNITV CAPACITYBUILDING

Concept - Structural and Nonstructural Measures Capacity Assessment; Strengthening Capacity forReducing Risk - Counter-Disaster Resources and their utility in Disaster Management - LegislativeSupportatthestate andnationallevels

TEXTBOOKS:

- 1. ManualonDisaster Management, NationalDisasterManagement, AgencyGovtofIndia.
- 2. Ayaz,."DisasterManagement:ThroughtheNewMillennium",AnmolPublications.(2009)
- Dave, P.K.. "Emergency MedicalServicesandDisasterManagement: AHolisticApproach", NewDelhi: JaypeeBrothersMedi calPublishers(P)Ltd., 2009
- 4. Disaster ManagementbyMrinaliniPandeyWiley2014.
- 5. Goel, S. L., "DisasterManagement", NewDelhi:Deep&DeepPublicationPvt. Ltd., 2008

REFERENCEBOOKS:

- 1. Narayan, B. "Disaster Management", New Delhi: A.P.H. Publishing Corporation, 2009
- 2. Kumar, N.. "DisasterManagement". NewDelhi: AlfaPublications., 2009
- 3. Ghosh,G.K., "DisasterManagement", New Delhi: A.P. HPublishingCorporation.

\$-1.- d-=+

S.No	NameoftheFaculty	Designation	Nameofthe College	MailID
		AssistantPr		
1	MrsJ.Srija	ofessor-I	AVIT	srija.civil@avit.ac.in

-\$-1.-d-=+

										Cate	gory	L	Т	Р	Credit
		MU	INICIP	AL SO	DLID W	ASTE	MANA	AGEM	ENT	OE-	EA	3	0	0	3
Pream	ble							-				-			
	Stru	cture is	an arra	angeme	nt and	organiz	ation o	of interr	elated e	elements	in a n	naterial o	object or	system, or	the
object	or sy	stem so	o organ	ized. N	Iaterial	structu	res inc	lude m	an-made	e objects	s such	as build	ings and	machines	and
natura	ıl objec	ts such	as biol	ogical o	organisr	ns, min	erals ar	nd chem	nicals.						
Prereq	uisite														
	Nil														
Course	e Objec	etives													
1.	The on-site/off-site processing of the same and the disposal methods.														
2.	The student is expected to know about the various effects and disposal options for the municipal solid waste.														
3.	. The collection and supply of water														
4.	4. The offsite processing involved in site														
Course	e Outco	omes		0.1											
On the	succes	stul cor	npletio	n of the	course	, studen	ts will	be able	to						
CO1.	To kn	ow abc	out the t	ypes of	waste	& Sour	ces						Analyze		
CO2 .	To St	udy the	on site	Storag	e & Pro	cessing							Apply		
CO3.	To stu	ıdy abo	out the c	ollectio	on & tra	ansfer t	the was	te					Apply		
CO4.	To St	udy the	proces	s of off	site pro	ocessing	5						Apply		
CO5.	To kno	ow abo	ut the so	olid wa	ste disp	osal							Apply		
Mapp	oing wi	th Prog	gramm	e Outco	omes a	nd Prog	gramm	e Speci	ific Out	comes					
COs	COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	S	м	L						_			<u> </u>			S
CO2	S	M	L	S	-	_	-	-	-		-	-		М	S
CO3	S	М	М	S	-	-	-	-	-	-	-	-		М	S
CO4	S	Μ	М	М	-	-	-	-	-	-	-	-		М	S
CO5	S	Μ	Μ	-	-	-	-	-	-	-	-	L		-	S
S-Str	S- Strong; M-Medium; L-Low														

-9-1- d-=+

Syllabus

SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

on-site storage & processing

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions-cradle to grave management concept, Prevailing laws of hazardous waste management- Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

Text Books

- 1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste

Management", Springer, 1994.

3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

Reference Books

- R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997, Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.
- Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002), Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9, Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development.
- 3. Government of India, New Delhi, (2000).
- 4. NPTEL Municipal Soild Waste Management by Prof. Ajay Kalamdhad IIT Guwahati.

\$-1.- d-=+

	Category	L	Т	Р	Credit
FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	OE-EA	3	0	0	3
		-			

PREAMBLE

This syllabus is intended for the Engineering students and enable them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Game playing. Thus, this syllabus focuses on to know about AI and its concepts.

PRERE	PREREQUISITE :NIL														
COURS	COURSE OBJECTIVES														
1.	To intro	oduce th	e basic	princip	les, tecl	hniaues	. and ar	oplicatio	ons of A	Artificia	l Intellige	nce.			
2.	To have	e knowl	edge of	generi	e proble	m-solv	ing met	hods in	Artific	ial Intel	ligence.				
3.	To desi	gn softy	vare ag	ents to	solve a	problen	<u></u> 1.								
4	Apply t	he knov	vledge	of algor	rithms to	o solve	arithme	etic prol	blems						
5	5. Assemble an efficient code for engineering problems.														
	7 15501110			000010			<u>// 0010111</u>								
COUR	<u>RSE OU</u>	TCOM	IES												
On the	success	ful com	pletion	of the o	course,	student	s will b	e able t	0						
CO1:. I	dentify	he diffe	erent ag	gent and	its type	es to sol	ve the p	problem	ıs			Understa	nd		
CO2: kı	now abc	out the p	roblem	solving	g techni	que in A	Artificia	al Intell	igence.			Apply			
CO3: C	onstruct	the not	rmal fo	rm and	represei	nt the k	nowled	ge.				Apply			
CO4: to environ	know a nent.	bout ex	tensior	n of con	dition p	robabil	ity and	how to	apply ii	n the rea	ıl time	Apply			
СО5: Т	o lean a'	bout Inf	formati	on Retri	ieval an	d Speed	ch Reco	gnition				Understa	nd		
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	М	-	-	-	-	_	-	М	S	М	
CO2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO3	М		S	М	М	-	-	-	-	-	-	М	S	-	М
CO4	S	М	М	М	М	-	-	_	-	-	-	М	S	М	М
CO5	S	М	М	М	М	-	-	-	-	-	-	М	S	М	-
S-Stro	ong; M-	Mediu	m; L-L	ow											

- p-1- d-==

INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system – Characteristics – Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE DESIGNERS										
S. No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in						
2	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in						

\$-1.- d-=+

													г		
											Category	L	т	P C	redit
		IN	TROD	UCTI	ON TO	INTE	RNET	OF			B J				
		TI	HINGS							0	E-EA	3	0	0	3
PREAN	1BLE								-						
Introduc	tion to	loT for	statist	ical dat	a manij	oulation	n and a	nalysis.	lt was	inspired	i by and	is most	compat	ible with	1 the
statistica DDEDE	al langu	age.													
i keke NIL	QUISI	IL													
COUR	RSE OB	JECTI	VES												
1	To lea	rn Intro	oduction	n to IoT											
2	To Sti	ıdy met	hodolo	gy of Ic	T.										
3	To De	velop I	оТ арр	lication	s using	Arduin	o and Ir	ntel Edi	tion.						
COUR	SE OU		<u></u>												
On the		ful con	nletion	of the	course	student	s will h	e able t	0						
CO1: 1	To Unde	rstand t	the basi	cs in In	troducti	on to I	oT in te	erms of	constru	cts, cont	rol				
stateme	ents, stri	ng func	tions							,		Underst	and		
CO2: 1	o Unde	rstand t	the use	of Intro	duction	to IoT	fundar	nentals.				Underst	and & A	Apply	
CO3: I	Learn to	apply I	ntroduc	tion to	IoT for	Comm	unicati	ng Sequ	iential I	Process		Underst	and & A	Apply	
CO4. /	hle to a	nnrecia	ate and a	annly th	e Intro	luction	to IoT	from a	statisti	ool neren	ective	Underst	and &	\nnly	
04.1		ippreen		appry u		uction	10 101	noma	statisti	lai persp					
CO5 TO	o learn l	ntroduc	ction to	IoT Cl	hallenge	S COME	C AND	DDOC		ME SDE		Underst	and & A	Apply	
		PO2			PO5	PO6	PO7	POS		PO10	PO11	PO12	PSO1	PSO2	PSO3
CO3	S	S	M	M	105 L	S	S	M	S	L	S	-	<u>1501</u> S	M	<u>1503</u>
CO2						2					~	М	M	M	Š
CO3	М	S	М	М	М	S	S	М	S	М	М	_	М	_	S
CO4												Μ	М	S	М
CO5	S	S	S	S	М	S	S	S	S	Μ	S	S	М	М	М
S- Stro	ong; M-	Mediu	m; L-L	ow											

-g-1.-d-=+

SYLLABUS UNIT I –INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network **UNIT III – Network & Communication aspects**

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"

2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES**

1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

\$-1.- d-=+

										Catego	rv	L	т	Р	Cre dit
				CYBE	R SEC	CURIT	ГY		_	OE-EA	- <u>,</u>	3	0	0	3
PREAMBLE															
To understand the need for Cyber Security in real time and to study techniques involved in it.															
PREREQUISITE : NIL															
	URSE OBJECTIVES														
1.	To understand the fundamentals of Cyber Security and issues														
2.	1 o study various cyber crimes and legal remedies														
3.	To apply various privacy and security														
4.	To study E-Commerce and digital payments														
5. 10 study the basic security aspects related to Computer and Mobiles															
On the successful completion of the course, students will be able to															
CO1: A	1: Able to understand the concept of Cyber security and issues and challenges								Understand						
associate	associated with it.														
CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures															
CO3: Able to appreciate various privacy and security concerns on online Social															
media and understand the reporting procedure of inappropriate content, Apply															
underlying legal aspects and best practices for the use of Social media platforms.															
CO4 : Able to understand the basic concepts related to E-Commerce and digital Apply															
CO5: A	CO5 : Able to understand the basic security aspects related to Computer and Apply														
Mobiles.															
MAPP	ING	WIT	<u>H PRO</u>	GRAN	AME (DUTC	OMES	AND	PROC	RAMN	AE SPE	CIFIC O	UTCO	OME	S
	n	п	n	ъ	D	D	п	р	n						P
	P O	P O	P O	P O	P O	r O	P O	r O	P O	PO	PO1	PO1	PS	PS	
COs	1	2	3	4	5	6	7	8	9	10	1	2	01		$\frac{1}{2}$ $\frac{1}{3}$
CO1	М	М	М	М	-	-	-	-	_	_	-	-	М	N	и м
CO2	М	М	М	М	М	_	-	_	_	_	_	_	М	N	и м
CO3	М	М	S	М	М		_	_	_	_	_	_	М	Ν	í м
CO4	s	М	М	М		_	-	_	_	_	-	-	М	N	ı s
CO5	s	М	М	М	S	_	_	_	_	_	_	-	М	Ν	ı s
S- Stror	ng; M	-Med	ium; L	-Low											
SYLLABUS															

-\$-1.-d-=+

INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

SOCIAL MEDIA OVERVIEW AND SECURITY

9 hours

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

E - C O M M E R C E AND DIGITAL PAYMENTS

9 hours

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

DIGITAL DEVICES S E C U R I T Y, TOOLS AND TECHNOLOGIES FOR CYBER SECURITY 9 hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7. Fundamentals of Network Security by F. Majwald, McGraw Hill

Fundamentals of Network Security by E. Maiwald, McGraw Hill

COURSE DESIGNERS								
S.	Name of the							
No.	Faculty	Designation	Department	Mail ID				
		Assistant professor G-						
1	Dr.R.Jaichandran	II	CSE	rjaichandran@avit.ac.in				

\$-1.- d-=+

9 hours
	Mr. B.			sundharamurthy@vmkvec.edu.i
2	Sundharamurthy	Assistant Professor	CSE	n

-g-1.-d-=+

DESIGN OF ELECTRONIC	Category	L	Т	Р	Credit
EQUIPMENT	OE-EA	3	0	0	3

The objective of this course is to sensitise a registrant to various aspects of an electronics product. Specifically on non-Electrical aspects like mechanical design and detailing. Starting from a need translated into specifications, leading to design and prototyping and ending up in a manufacturable physical prototype.

PREREQUISITE - BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES

To understand the various Concept of Industrial Design process. 1

2 To apply the basic Concept of electronic Product designs methodology.

- 3 *To classify the Concept of Ergonomics & aesthetics in product design.*
- 4 To understand the Knowledge regarding the design of product packaging and working environment.
- 5 To understand the Knowledge of different industrial standard and value analysis.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Visualize the concept for product design with respect to ergonomics and aesthetics.	Remember
CO2. Analyze, design and implement control panels of electronic equipment	Apply
CO3. Apply creativity in the design of system by formulating architecture with proper placement of	Apply
components.	
CO4. Apply the concept of visual communication techniques in product design.	Apply
CO5. Apply the process of value analysis in existing product.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	P01	<i>P02</i>	<i>P03</i>	<i>P04</i>	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	М	L	-	-	S	-	-	L	М	L	-	-	S	-	-
СО2	М	L	-	M	S	-	-	L	М	L	-	-	S	-	-
СОЗ	М	L	-	М	S	-	-	L	М	L	-	L	S	-	М
<i>CO</i> 4	S	М	L	-	S	-	-	L	М	L	-	L	S	М	М
СО5	S	M	L	-	S	-	-	M	L	L	-	L	S	М	М
C Charles		N/													

S- Strong; M-Medium; L-Low

SYLLABUS

MODULE 1: INTRODUCTION

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

MODULE 2: PRODUCT PROTOTYPES

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

MODULE 3: PRODUCT DESIGN AND PLANNING

Electronic product design and devel

Product planning: Defining the task

P-l-l-l-sting and Pricing of Industrial design,

ies, brainstorming documentation.

MODULE 4: ERGONOMICS

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

MODULE 5: CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

TEXTBOOKS:

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

REFERENCE BOOKS:

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H, "Industrial

Design and Engineering Design ", Council, London and Springer Verlag, 1983

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in

\$-1.- d-=+

INTRODUCTION TO INDUSTRY 4.0 AND	Category	L	Т	Р	Credit
INDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE

Basic knowledge of computer and internet

COURSE OBJECTIVES

- 1 Industry 4.0 concerns the transformation of industrial processes through the integration of modern technologies such as sensors, communication, and computational processing.
- 2 Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing, Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.
- 3 Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.
- ⁴ *IIoT links the automation system with enterprise, planning and product lifecycle.*

⁵ Real case studies

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply & Analyzing the transformation of industrial process by various	Analyze
techniques.	
CO2. Evaluate the transformation technologies are considered to be the	Apply
different drivers.	
CO3. Existing industrial systems will adopt the applications of IIoT.	Apply
CO4. Intensive contributions over automation system with enterprise,	Analyze
planning and product life cycle	
CO5. Analyze of various Real time case studies.	Analyze

\$-1- d-=+

MAPPIN	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO	<i>P02</i>	<i>P03</i>	РО	PO	PSO1	PSO	PS							
	1			4	5	6	7	8	9	10	11	12		2	0
															3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
СО2	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО4	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО5	S	S	S	S	М	-	-	-	-	-	-	М	S	М	М
S- Stron	g; M-Med	ium; L-I	Low												

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGSIntroduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIOT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIOT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, and Industrial IoT-Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

COURSE DESIGNERS

-1- d-===

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L.K.Hema	Professor &Head	ECE	hodece@avit.ac.in
2	Dr.T.Muthumanickam	Professor& Head	ECE	hodece@vmkvec.edu.in

-\$-1.-d-=+

		31) PR	INTI	NG A	AND I	TS	Cate	gory	L		Т	Р	Cr	edit
CategoryLTPCredit APPLICATIONS $OE-EA$ 3003Preamble The course is designed to impart knowledge and skills related to 3D printing technologies its type applications.Prerequisite – NILCourse Objective1To Know the importance of 3D printing in Manufacturing2To know about Vat Photo Polymerization & Material Jetting.3To know about binder jetting material extrusion & sheet lamination4To know about the methods for powder bed fusion & direct energy deposition.5To know about the applications of 3D Printing.Course Outcomes: On the successful completion of the course, students will be able toCOLImportance of 3D printing in ManufacturingRememberCourse Outcomes: On the successful completion of the course, students will be able toCOLImportance of 3D printing in ManufacturingRememberCourse Outcomes: On the successful completion of the course, students will be able toCOCO1Importance of 3D printing in ManufacturingUnderstandCO2Vat Photo Polymerization & Material Jetting.UnderstandCO2Vat Photo Polymerization & Sheet laminationUnderstandCO2Applications of 3D Printing. <td co<="" td=""><td>3</td></td>		<td>3</td>	3												
Prean The cor applica	ible urse is tions.	design	ed to	impar	t knov	vledge	and sk	tills rela	ited to	3D pri	nting to	echnolo	ogies its	type	
Prerec	quisite	– NI	L												
Cours	e Obj	ective													
1	To Kno	ow the	impo	rtance	of 3I) print	ing in I	Manufa	cturing	04					
2	To kno	w abo	ut Va	t Phot	o Poly	meriz	ation 8	& Mater	ial Jett	ting.					
3	To kno	w abo	ut bin	ider je	etting	mater	rial ext	trusion	& she	eet lam	inatio	n			
4	To kno	w abo	ut the	meth	ods f	or po	wder b	ed fusi	on &	direct	energy	/ depos	sition.		
5	To kno	w abo	ut the	appli	cation	s of 3I	O Print	ing.							
Cour	se Ou	tcome	es: O	n the	succ	essful	l comp	oletion	of th	e cour	rse, sti	ıdents	will b	e able	to
CO1.	Impo	rtance	of 3D	printi	ing in	Manu	facturii	ng				I	Remen	nber	
CO2.	Vat P	hoto P	olyme	erizati	on &	Mater	ial Jetti	ng.				τ	Unders	tand	
CO3.	Bind	er jetti	ng m	ateria	ıl extı	rusion	& she	et lami	inatio	n		τ	Unders	tand	
CO4.	Powe	ler bed	l fusi	on &	direc	t ener	gy dep	positior	1.			τ	Unders	tand	
CO5.	Appli	cation	s of 3	D Prir	nting.							τ	Unders	tand	
Map	ping w	vith P	rogra	amme	e Out	come	es and	Progr	amm	e Spec	cific O	utcom	ies		
	PO	РО	PO	PO	PO	PO	РО	РО	PO	PO1	PO1	PO1	PSO	DCO2	
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	PSO2	PSO3
CO1	М	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	M	L	Μ	-	S	М	М	-	-	-	-	-	М	M-	М
CO3	M	L	М	-	S	М	М	-	-	-	-	-	М	M-	М
CO4	М	L	М	-	S	М	М	-	-	-	-	-	М	M-	М
CO5	M	L	L	_	_	_	-	_	-		_	-			
S- Str	ong; N	/I-Me	dium	; L-I	JOW										

-\$-1.-d-=+

INTRODUCTION

Need - Development of AM systems – AM process chain -Classification of AM processes- Applications-Advantages of AM and Types of materials for AM.Introduction to STL format, Pre & Post-processing of STL files, Various slicing methods, Part orientation and support generation, Support structure design, Tool path generation

VAT PHOTO POLYMERIZATION & MATERIAL JETTING

Vat Photo polymerization - Stereo lithography process, working principle, advantages and disadvantages, Material Jetting - process, working principle, advantages and disadvantages.

BINDER JETTING-MATERIAL EXTRUSION & SHEET LAMINATION

Binder Jetting- process, working principle, advantages and disadvantages. Material Extrusion –Fused Deposition Modeling process, working principle, advantages and disadvantages. Sheet Lamination – Laminated Object Manufacturing process, working principle, advantages and disadvantages.

POWDER BED FUSION & DIRECT ENERGY DEPOSITION

Powder Bed Fusion – Selective Laser Sintering process, working principle, advantages and disadvantages, Direct Energy Deposition- process, working principle, advantages and disadvantages.

APPLICATIONS OF 3D PRINTING

Applications for 3D Printing - Use of 3D Printing-Limitations of 3D Printing and Further Development of Medical 3D Printing Applications. Use of Multiple Materials in 3D Printing-Embedded Component 3D Printing, Commercial Applications Using Multiple Materials, Future Directions, Business Opportunities and Future Directions.

I ext B	OOKS											
1	Ian Gibson, David Rosen, and Brent Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, New York, NY, 2015.											
2	Venuvinod, Patri K., a & Business Media, 20	and Weiyin Ma. Rapid pr 13.	ototyping: laser-based and	other technologies. Springer Science								
Refer	ence Books											
1	Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", World Scientific, 2003.											
2	Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, 2006.											
3	Kumar, L. Jyothish, P technologies. Singapo	ulak M. Pandey, and Dav re: Springer, 2019.	vid Ian Wimpenny, eds. 3D	printing and additive manufacturing								
Cours	e Designers											
Sl.No	Faculty Name	Designation	Department/ Na me of the college	Email id								
1	S.Kalyanakumar	Assistant Professor Gr II	Mech / AVIT	kalyanakumar@avit.ac.in								

\$-1- d-=+

								С	ategor	·y	L	Т	Р	0	redit
		INI	DUST	RIAI	L RO	BOTI	CS	0	E-EA		3	0	0		3
Pream Theobje	ible ectiveoj	fthisc	ourse	istoin	npartl	knowl	edged	about	indust	rialro	botsfo	rtheirco	ntrola	nddesig	ın.
Prerec NIL	quisite	:													
Cours	eObjec	ctive													
1 To	ointrodu	icebasi	icconc	epts.pa	artsofr	obotsa	undtyp	esofro	bots						
2				1 4											
2 To	olearnat	outRo	bot ki	nemat	icsand	dynam	nics								
	olearndi	fferen	t types	ofsens	sorsus	edinrol	ootsan	ditsco	ntrol						
4 T	underst	tandth	adiffa	onttur	esofa	otuatio	neveto	mellea	dinroh	ate					
5	Junders	landin	cunici	entryp	<u>cs01a</u>	luatio	nsyste	mouse	dinioo	515					
То	ounderst	tandth	erobot	contro	lSyste	ms,pro	ogram	mingo	frobots	andits	Applica	tions.			
Cours	eOutco	omes:	On th	iesuco	essfu	lcomj	pletio	nofth	ecours	se,stu	lentsw	illbeab	leto		
CO1.	Under	etand	theha	siccon	figure	otions	andki	nemat	icevete	msof	ohote		Unde	rstand	
<u> </u>	Salva	stand	maaf	robotl	ingun	ationa	nddyr			/115011	00013		Annly		
	Lindor	oton d	thedif	Former		aticsa			b atar		and the a		Appr	y	
CO3.	pplica	tions,	differ	ent ty	pesof	contro	lsyste	emsus	ed inro	bots	andune	lla	Unde	rstand	
CO4.	Under robot	stand syster	andap ns	plicat	ionso	fthedi	fferen	it type	s ofact	tuators	susedir	1	Unde	rstand	
CO5.	Lindow	stand	tha Da	h at A	mulia	tions		i ana f	Salda				Unda	natand	
Mappir	ngwith	Progr	amm	eOut	comes	sandP	rogra	amme	Specif	icOu	tcomes	<u> </u>	Onde	Istanu	
CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	C	м	T			т							G		т
COI	D	IVI		-	-	L	-	-	-	-	-	-	8	-	
CO2	S	S	M	M	-	M	-	-	_	-	-	-	S	-	L
<u>CO3</u>	S	M	M	M	_	M	_	_	_	-	-	-	S	_	L
CO4	s	s	м	м	_	L	_	_		-	_	_	S	_	L
CO5	S	S	Ĺ	S	-	S	-	-	-	-	-	-	S	-	Ĺ
S-Stron	g;M-M	edium	;L-Lov	V											

-\$-1.-d-=+

INTRODUCTIONTOROBOTICS

Introduction to Automation and Robotics- Basic concepts, Need, Law, History, Anatomy, specificationsclassification, present and future applications. Components of the Industrial Robotics: common types of arms. Components, Architecture, degrees of freedom, Precision of Movement: Resolution, Accuracy and Repeatability, Speed of Response and Load Carrying Capacity.

ROBOT ARM KINEMATICS

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point to point, Continuous Path Control

GRIPPERS AND SENSORS FOR ROBOTICS

Grippers for Robotics - Types of Grippers, Guidelines for design for robotic gripper, Force analysis for various basic gripper system. Sensors for Robots - Types of Sensors used in Robotics, Classification and applications of sensors, Characteristics, Selections of sensors. Necessity for sensors and vision system in the working and control of a robot.

ROBOTACTUATIONSYSTEMS

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors – potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools

ROBOTAPPLICATIONS

Robot Application in Manufacturing: Material Transfer – Material handling, loading and unloading- Processing – spot and continuous arc welding & spray painting – Assembly and Inspection. ApplicationsinMedical, Household, Entertainment, Space, Underwater, Defense, Disaster management. Micro and Nano robots, Future Applications.

TextBooks

1	Saha.S.K.,"IntroductiontoRo	botics.2ndEdition	.McGraw-HillHig	herEducation.	NewDelhi.2014.
-		,	.,		

- 2 MikellPGroover,NicholasGOdrey,MitchelWeiss,Roger NNagel,AshishDutta,"IndustrialRobotics, TechnologyprogrammingandApplications",McGrawHill,2012.
- 3 MittalR.K.andNagrathI.J., "RoboticsandControl", TataMcGrawHill.

ReferenceBooks

- 1 Ghosal, A., "Robotics", Oxford, NewDelhi, 2006.
- 2 NikuSaeedB., "IntroductiontoRobotics:Analysis,Systems,Applications",PHI,NewDelhi.
- ³ SteveHeath, "EmbeddedSystemDesign", 2ndEdition, Newnes, Burlington, 2003
- MerzoukiR.,SamantarayA.K.,PhathakP.M.andBouamamaB.Ould,"IntelligentMechatronicSystem:Modeling, ControlandDiagnosis",Springer.

CourseDesigners

S.No	FacultyName	Designation	Department/ Nameofthe College	Emailid
1	P.KUMARAN	AP-II	MECH/AVIT	kumaranp@avit.ac.in

\$-1- d-=+

BIOMOLECULES -	Category	L	Т	Р	С
STRUCTURE, FUNCTION IN HEALTH AND DISEASE	OE-EA	3	0	0	3

Biomolecules like carbohydrates, proteins, fat are vital components of any living system. Basic knowledge about them helps in maintaining a healthy lifestyle, free of sickness and a general awareness about hygiene.

PREREQUISITE NIL

COURSE OBJECTIVES

1	To give an overview of importance of biomolecules
2	To elaborate the structure of proteins and nucleic acids and its role in disease.
3	To enumerate the role of carbohydrates and their cellular function in physiology and pathology
4	To enumerate the role of lipids and their cellular function in physiology and pathology.

5 To briefly cholesterol and its role in diseases

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. I	CO1. Relate the basics of biomolecules in and around him											Und	Understand		
CO2. U	CO2. Understand the structure of biomolecules such as proteins and nucleic acids										Und	erstand			
CO3. I	Discov	er the	role o	of carb	ohydr	ates ir	n healt	hy and	diseas	ed con	litions		App	ly	
CO4. I	Relate	disfun	ctioni	ng of	lipids	with c	lisease	e					Ana	lyse	
CO5. 0	Criticiz	ze the	role of	f chole	estero	l in dis	seases	•					Eval	uate	
MAPF	PING	WITH	I PRC)GRA	MMI	E OUT	ГCON	IES A	ND PH	ROGRA	AMME	SPEC	IFIC O	UTCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-
CO3	М	L	М	М	-	S	-	-	-	-	-	-	-	L	-
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М
CO5	XO5 S - L L - M S S M -														
S- Stro	ong; M	-Medi	um; L	-Low				•	•	•			•	•	

- p-1- d-=+

PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and nonessential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

COURSE DESIGNERS

S.No	Name of the	Designation	Department	Mail ID
•	Faculty			

\$-1.- d-=+

1	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in
2	Ms.S.Sowmiy a	Assistant Professor	Pharmaceutical Engineering	sowmiya.vmkvec@vmrf.edu.in

-9-1- d-=+

				PHAR	MAC	OCF	NOM	ICS		Cat	egory	L	Т	P	Cr	edit
						OUL				OF	C-EA	3	0	0		3
PRF	EAMBLE											1				
Phar	Pharmacogenomics involves the study of the relationship between an individual's genetic makeup and															
his c	or her resp	onse	to a di	rug. Pl	narma	cogen	etics,	a com	ponei	nt of pl	narmaco	genomi	ics, is t	the st	udy c	of the
relat	ionship be	etweer	n a sin	gle ge	ne and	l its re	espons	e to a	drug.							
PRF	EREQUIS	SITE -	NIL													
CO	URSE OB	JEC	FIVE	5												
1	Discuss a	about 1	the ba	sic kno	owledg	ge abo	out ph	armac	ogeno	mics a	nd drug	design	using g	genor	nic	
	application	ons fo	r drug	action	n and t	oxicit	y.									
2	Perform	how in	ndivid	ualiza	tion of	f drug	thera	py can	be ac	chieved	l based o	on a per	son's g	geneti	c ma	keup
	while rec	lucing	unwa	nted d	rug ef	fects.										
3	Outline t	he Pha	armac	ogeno	mics s	tudies	s on ho	ow ger	netic c	lifferer	ices betw	ween in	dividua	als ca	n affe	ect
	response	s to va	arious	drugs.												
4	Formulat	e on 1	medic	ine ski	ills aco	quired	l by th	e stud	ent an	id his a	ction in	differen	nt path	ologi	es	
5	Develop	acquii	re kno	wledg	e aboi	it the	influe	nce of	genet	tic alter	rations o	on the th	nerapet	itic et	ffect	and
	adverse r	reactio	ons of	the dru	ıgs, fr	om a j	perspe	ective	of ind	ividual	ized the	erapy.				
CO	URSE OU	TCO	MES													
Afte	r the succ	essful	comp	letion	of the	cours	se, lear	mer w	ill be	able to						
CO1	.Recogniz	ze the	effect	of gei	netic d	liffere	nces b	etwee	n indi	ividual	s in the	outcom	e of 1	Reme	mbei	r
drug	therapy a	$\frac{1}{2}$ nd in	drug e	efficac	y and	toxici	ty. do no	lumor	mhian		hiomor	kar for	tha	Undo	raton	4
nred	iction of r	ick th	ioronal		spons	and	nrogn	osis of	fmali	ananci		KCI IUI	uic	Unuc	Istan	u
CO^{2}	Utilize :	and m	anage	the n	ew ge	nomi	rs has	ed too	$\frac{1}{1}$ as	they be	ecome a	vailable	e as 1	Unde	rstan	
well	as make h	oest tro	eatme	nt cho	ices.		00000	cu 100	15 45	uney of		, and the		enae	Istan	4
CO4	CO4. Examine the applications of genomics principles in drug action and toxicology Analyze															
CO5	CO5. Validation of case studies related to pharmacogenomics Analyze															
MA	PPING W	ITH	PRO	GRAN	IME	OUT	COM	ES AN	ND PI	ROGR	AMME	E SPEC	IFIC (COM	TES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L		
CO2	M	M	M	M	L	-	-	-	M	-	L	L	L	L		-

-9-1.- d-=+

CO4	М	М	М	M	M	-	-	-	S	-	L	L	Μ	L	-
CO5	L	L	L	L	S	-	-	-	М	-	М	М	S	М	-
0 0															

S- Strong; M-Medium; L-Low

SYLLABUS

PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket.

PHARMACOGENOMICS – CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs,

\$-1- d-=+

chemotherapeutic agents for cancer treatment.

TEXT BOOKS

- 1. Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 3. Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

COURS	COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in						

- p-1. - d-=+

PROJECT WORK	Categor y	L	Т	Р	Credit
	PI-P	0	0	16	8

The project provides learners with the opportunity to explore a problem or issue of particular personal or professional interest and to address that problem or issue through focused study and applied research under the direction of a faculty member. The project demonstrates the learner's ability to synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems. This final project affirms learners' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively.

PREREQUISITE -- Nil

COURSE OBJECTIVES

1	To provide learners with the opportunity to apply the knowledge and skills acquired in their courses to a specific problem or issue.
n	To allow learners to extend their academic experience into areas of personal interest,
2	working with new ideas, issues, organizations, and individuals.
	To encourage learners to think critically and creatively about academic, professional,
3	or social issues and to further develop their analytical and ethical leadership skills
	necessary to address and help solve these issues.
4	To provide learners with the opportunity to refine research skills and demonstrate their
4	proficiency in written & oral communication skills.
5	To take on the challenges of teamwork, prepare a presentation in a professional
3	manner, and document all aspects of design work.
COLU	

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the knowledge and skills acquired in their courses to a specific problem or issue.	Apply
CO2. Extend their academic experience into areas of personal interest, working with new ideas, issues, organizations, and individuals.	Analyze
CO3. Think critically and creatively about academic, professional, or social issues and to furtherdevelop their analytical and ethical leadership skills necessary to address and help solve these sues.	Create
CO4. Refine research skills and demonstrate their proficiency in written & oral	Evaluate

- p-1- d-==

communication skills.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO'S	PO 1	РО 2	РО 3	PO 4	PO 5	PO 6	PO 7	Р О 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	S	L	L	M	М	-	-	-	М	М	-	Μ	М	М	-
CO2	M	M	M	M	L	-	-	-	М	L	-	Μ	М	М	М
CO3	S	S	M	M	-	-	-	L	-	L	S	Μ	S	S	-
CO4	S	M	M	M	-	-	-	L	-	L	М	Μ	S	S	-
0 0		1 1 1	1.	тт											

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. The project is a major component of our engineering curriculum: it is the culmination of the program of study enabling the learners to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open-ended problem in engineering.
- 2. Each student must register to the project course related to his or her program
- 3. Project course consists of one semester and would be allowed to register only during the final year of study.
- 4. Project may be initiated during the pre-final semester but will be assessed and credits transferred only during the last semester of study, upon completion of all other degree requirements. Generally the undergraduate project is a team based one.
- 5. Each team in the major course will consist of maximum of 5 learners.
- 6. Each project will be assigned a faculty, who will act as the supervisor.
- 7. The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability.
- 8. Each group must document and implement a management structure. Group leadership roles must be clearly identified including who has responsibility for monitoring project deliverables and group coordination.
- 9. A group project may be interdisciplinary, with learners enrolled in different engineering degrees, or in Engineering plus other faculties such as Management, Medical and Health Sciences, Science and Humanities.
- 10. Each student team is expected to maintain a log book that would normally be used to serve as a record of the way in which the project progressed during the course of the session.
- 11. Salient points discussed at meetings with the supervisor (i.e., suggestions for further meetings, changes to experimental procedures) should be recorded by the student in order to provide a basis for subsequent work.
- 12. The logbook may be formally assessed;

\$-1.- d-=7

- 13. The contribution of each individual team member will be clearly identified and the weightage of this component will be explicitly considered while assessing the work done.
- 14. A project report is to be submitted on the topic which will be evaluated during the final review.
- 15. Assessment components will be as spelt out in the regulations.
- 16. The department will announce a marking scheme for awarding marks for the different sections of the report.
- 17. The project report must possess substantial technical depth and require the learners to exercise analytical, evaluation and design skills at the appropriate level.

	SE DESIGNERS				
S.No	Name of the Faculty	Designation	Department	Mail ID	
•					
1	Dr.R.Devarajan	Professor	EEE/VMKVEC	<u>deverajan@vmkvec.edu.</u> <u>in</u>	
2	Dr. L.Chitra	Asso. Prof.	EEE/AVIT	chitra@avit.ac.in	

COURSE DESIGNERS

- p-1- d-==

Course Code	Course Title	Category	L	Т	Р	С
	YOGA AND MEDITATION	AC	0	0	2	0

OBJECTIVES:

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT

- Surya namaskar, Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya,Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

OUTCOMES :

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

TEXT BOOK:

YogacharyaSundaram, *Sundra Yoga Therapy*, Asana Publications, 2009 **REFERENCES:**

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr.AnandaBalayogiBhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Nayagam, *MudumaikkuMutrupulliVaikkumMuthiraigal*, SaaruPrabha Publications, 2010.

- p-1- d-=+

Subject Code		Category	L	Т	Р	Credit
	Gender Equity and Law					
	(Common to all Branches)	AC	0	0	2	0

Gender Equity is the provision of fairness and justice in the distribution of benefits and responsibilities between Men, Women, Transgender, and Gender non-binary individuals. Gender equity is important because, historically, societies around the world have deemed females, transgender people, and nonbinary people as "weaker" or less important than males. Gender equity emphasizes respecting individuals without discrimination, regardless of their gender. There are legal provisions thataddress issues like inequalities that limit a person's ability to access opportunities to achieve better health, education, and economic opportunity based on their gender.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To sensitize the students regarding the issues of gender and thegender inequalities prevalent in society.
2	To raise and develop social consciousness about gender equity among thestudents.
3	To build a dialogueand bring a fresh perspective on transgender and gender non-conforming individuals.
4	To create awareness among the students and to help them face gender stereotype issues.
5	To help the studentsunderstand the various legal provisions that are available in our society.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Understand the importance of gender equity	Understand
CO2.Initiate the awareness and recognize the social responsibility with regards to gender equity.	Apply
CO3.To develop a sense of inclusiveness and tolerance towards various genders without any discrimination.	Apply
CO4. To evaluate the social issues and apply suitable gender-related regulations for inclusive living.	Evaluate
CO5.To identify and analyze the existing gender inequality problems faced in various institutions.	Analyse
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECI	FIC OUTCOMES

COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03																
	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

- p-1- - -===

CO1	S	Μ	L	-	_	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	_	S	S	S	-	-	-	S	-	-	-
S_ Str	S- Strong: M-Modium: L-Low														

UNIT –I INTRODUCTION TO GENDER AND SEX

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – GenderStereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT –II - GENDER BIAS

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

\$-1.- d-=+

6 hrs

6 hrs

6hrs

6 hrs

6hrs

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, andExploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURSE DESIGNERS									
S.No.	Name of the Faculty	Mail ID							
	Gnana Sanga Mithra.S								
1		sangamithra@avil.edu.in							
	Aarthy.G								
2		aarthy@avil.edu.in							

\$-1.- d-=+

Course Code	Course Title	Category	L	Т	Р	С
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE					
		AC	0	0	2	0

Course Objectives:

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2:

Protection of traditional knowledge: The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT-3:

Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

UNIT-4:

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5:

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation

- p-1- d-=+

and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

Text Books:

1. Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

-9-1- d-=+

Course Code	Course Title	category	L	Т	Р	С
	INDIAN CONSTITUTION	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties –Directive Principles State Policy

UNIT II –Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha UNIT III –Government of the States

The Governor – Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayat, Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Total Hours: 30 hours

Software/Learning Websites:

1. https://www.constitution.org/cons/india/const.html

2. http://www.legislative.gov.in/constitution-of-india

3. <u>https://www.sci.gov.in/constitution</u>

4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/

Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW SCHOOL OF
		ADMINISTRATIVE AND ADJUDICATORY	INDIA UNIVERSITY
		PROCESS	

COURSE DESIGNER							
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID			
1	Dr.Sudheer	Professor	AV School of Law	Sudheersurya18@gmail.com			

\$-1- d-=+